Skip to main content
  • Research Article
  • Published:

Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration-evidence for neuroprotective and neurotoxic effects

Abstract

Pharmacological up-regulation of heat shock proteins (hsps) rescues motoneurons from cell death in a mouse model of amyotrophic lateral sclerosis. However, the relationship between increased hsp expression and neuronal survival is not straightforward. Here we examined the effects of two pharmacological agents that induce the heat shock response via activation of HSF-1, on stressed primary motoneurons in culture. Although both arimoclomol and celastrol induced the expression of Hsp70, their effects on primary motoneurons in culture were significantly different. Whereas arimoclomol had survival-promoting effects, rescuing motoneurons from staurosporin and H2O2 induced apoptosis, celastrol not only failed to protect stressed motoneurons from apoptosis under same experimental conditions, but was neurotoxic and induced neuronal death. Immunostaining of celastrol-treated cultures for hsp70 and activated caspase-3 revealed that celastrol treatment activates both the heat shock response and the apoptotic cell death cascade. These results indicate that not all agents that activate the heat shock response will necessarily be neuroprotective.

Abbreviations

ALS:

Amyotrophic Lateral Sclerosis

HSF-1:

heat shock factor-1

hsp:

heat shock protein

HSR:

heat shock response

References

  1. Samali, A. and Cotter, T.G. Heat shock proteins increase resistance to apoptosis. Exp. Cell Res. 223 (1996) 163–170.

    Article  PubMed  CAS  Google Scholar 

  2. Beere, H.M. and Green, D.R. Stress management - heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol. 11 (2001) 6–10.

    Article  PubMed  CAS  Google Scholar 

  3. Garofalo, O., Kennedy, P.G., Swash, M., Martin, J.E., Luthert, P., Anderton, B.H. and Leigh, P.N. Ubiquitin and heat shock protein expression in amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. 17 (1991) 39–45.

    Article  PubMed  CAS  Google Scholar 

  4. Kalmar, B., Burnstock, G., Vrbova, G., Urbanics, R., Csermely, P. and Greensmith, L. Upregulation of heat shock proteins rescues motoneurones from axotomy-induced cell death in neonatal rats. Exp. Neurol. 176 (2002) 87–97.

    Article  PubMed  CAS  Google Scholar 

  5. Vleminckx, V., Van Damme, P., Goffin, K., Delye, H., Van Den, B.L. and Robberecht, W. Upregulation of HSP27 in a transgenic model of ALS. J. Neuropathol. Exp. Neurol. 61 (2002) 968–974.

    PubMed  CAS  Google Scholar 

  6. Maatkamp, A., Vlug, A., Haasdijk, E., Troost, D., French, P.J. and Jaarsma, D. Decrease of Hsp25 protein expression precedes degeneration of motoneurons in ALS-SOD1 mice. Eur. J. Neurosci. 20 (2004) 14–28.

    Article  PubMed  Google Scholar 

  7. Urushitani, M., Kurisu, J., Tateno, M., Hatakeyama, S., Nakayama, K., Kato, S. and Takahashi, R. CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J. Neurochem. 90 (2004) 231–244.

    Article  PubMed  CAS  Google Scholar 

  8. Batulan, Z., Shinder, G.A., Minotti, S., He, B.P., Doroudchi, M.M., Nalbantoglu, J., Strong, M.J. and Durham, H.D. High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J. Neurosci. 23 (2003) 5789–5798.

    PubMed  CAS  Google Scholar 

  9. Evgrafov, O.V., Mersiyanova, I., Irobi, J., Van Den, B.L., Dierick, I., Leung, C.L., Schagina, O., Verpoorten, N., Van Impe, K., Fedotov, V., Dadali, E., Auer-Grumbach, M., Windpassinger, C., Wagner, K., Mitrovic, Z., Hilton-Jones, D., Talbot, K., Martin, J.J., Vasserman, N., Tverskaya, S., Polyakov, A., Liem, R.K., Gettemans, J., Robberecht, W., De Jonghe, P. and Timmerman, V. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat. Genet. 36 (2004) 602–606.

    Article  PubMed  CAS  Google Scholar 

  10. Breuer, A.C., Lynn, M.P., Atkinson, M.B., Chou, S.M., Wilbourn, A.J., Marks, K.E., Culver, J.E. and Fleegler, E.J. Fast axonal transport in amyotrophic lateral sclerosis: an intra-axonal organelle traffic analysis. Neurology 37 (1987) 738–748.

    PubMed  CAS  Google Scholar 

  11. Williamson, T.L. and Cleveland, D.W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2 (1999) 50–56.

    Article  PubMed  CAS  Google Scholar 

  12. Puls, I., Jonnakuty, C., LaMonte, B.H., Holzbaur, E.L., Tokito, M., Mann, E., Floeter, M.K., Bidus, K., Drayna, D., Oh, S.J., Brown, R.H., Jr., Ludlow, C.L. and Fischbeck, K.H. Mutant dynactin in motor neuron disease. Nat. Genet. 33 (2003) 455–456.

    Article  PubMed  CAS  Google Scholar 

  13. Munch, C., Sedlmeier, R., Meyer, T., Homberg, V., Sperfeld, A.D., Kurt, A., Prudlo, J., Peraus, G., Hanemann, C.O., Stumm, G. and Ludolph, A.C. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 63 (2004) 724–726.

    PubMed  CAS  Google Scholar 

  14. Watanabe, M., Dykes-Hoberg, M., Culotta, V.C., Price, D.L., Wong, P.C. and Rothstein, J.D. Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol. Dis. 8 (2001) 933–941.

    Article  PubMed  CAS  Google Scholar 

  15. Okado-Matsumoto, A. and Fridovich, I. Amyotrophic lateral sclerosis: a proposed mechanism. Proc. Natl. Acad. Sci. U. S. A 99 (2002) 9010–9014.

    PubMed  CAS  Google Scholar 

  16. Kalmar, B., Burnstock, G., Vrbova, G. and Greensmith, L. The effect of neonatal nerve injury on the expression of heat shock proteins in developing rat motoneurones. J. Neurotrauma 19 (2002) 667–679.

    Article  PubMed  Google Scholar 

  17. Kieran, D., Kalmar, B., Dick, J.R., Riddoch-Contreras, J., Burnstock, G. and Greensmith, L. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat. Med. 10 (2004) 402–405.

    Article  PubMed  CAS  Google Scholar 

  18. Vigh, L., Literati, P.N., Horvath, I., Torok, Z., Balogh, G., Glatz, A., Kovacs, E., Boros, I., Ferdinandy, P., Farkas, B., Jaszlits, L., Jednakovits, A., Koranyi, L. and Maresca, B. Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat. Med. 3 (1997) 1150–1154.

    Article  PubMed  CAS  Google Scholar 

  19. Hargitai, J., Lewis, H., Boros, I., Racz, T., Fiser, A., Kurucz, I., Benjamin, I., Vigh, L. Penzes, Z., Csermely, P. and Latchman, D.S. Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem. Biophys. Res. Commun. 307 (2003) 689–695.

    Article  PubMed  CAS  Google Scholar 

  20. Cleren, C., Calingasan, N.Y., Chen, J. and Beal, M.F. Celastrol protects against. J. Neurochem. 94 (2005) 995–1004.

    Article  PubMed  CAS  Google Scholar 

  21. Kiaei, M., Kipiani, K., Petri, S., Chen, J., Calingasan, N.Y. and Beal, M.F. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener. Dis. 2 (2005) 246–254.

    Article  PubMed  CAS  Google Scholar 

  22. Westerheide, S.D., Bosman, J.D., Mbadugha, B.N., Kawahara, T.L., Matsumoto, G., Kim, S., Gu, W., Devlin, J.P., Silverman, R.B. and Morimoto, R.I. Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem. 279 (2004) 56053–56060.

    Article  PubMed  CAS  Google Scholar 

  23. Patel, Y.J., Payne, S., de Belleroche, J. and Latchman, D.S. Hsp27 and Hsp70 administered in combination have a potent protective effect against FALS-associated SOD1-mutant-induced cell death in mammalian neuronal cells. Brain Res. Mol. Brain Res. 134 (2005) 256–274.

    Article  PubMed  CAS  Google Scholar 

  24. Liu, J., Shinobu, L.A., Ward, C.M., Young, D. and Cleveland, D.W. Elevation of the Hsp70 chaperone does not effect toxicity in mouse models of familial amyotrophic lateral sclerosis. J. Neurochem. 93 (2005) 875–882.

    Article  PubMed  CAS  Google Scholar 

  25. Gifondorwa, D.J., Robinson, M.B., Hayes, C.D., Taylor, A.R., Prevette, D.M., Oppenheim, R.W., Caress, J. and Milligan, C.E. Exogenous delivery of heat shock protein 70 increases lifespan in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. 27 (2007) 13173–13180.

    Article  PubMed  CAS  Google Scholar 

  26. Camu, W. and Henderson, C.E. Rapid purification of embryonic rat motoneurons: an in vitro model for studying MND/ALS pathogenesis. J. Neurol. Sci. 124 Suppl (1994) 73–74.

  27. Greig, A., Donevan, S.D., Mujtaba, T.J., Parks, T.N. and Rao, M.S. Characterization of the AMPA-activated receptors present on motoneurons. J. Neurochem. 74 (2000) 179–191.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, J., Gines, S., MacDonald, M. E. and Gusella, J.F. Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation. BMC Neurosci. 6 (2005) 1.

    Article  PubMed  Google Scholar 

  29. Guzhova, I.V., Darieva, Z.A., Melo, A.R. and Margulis, B.A. Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2 (1997) 132–139.

    Article  PubMed  CAS  Google Scholar 

  30. Krohn, A.J., Preis, E. and Prehn, J.H. Staurosporine-induced apoptosis of cultured rat hippocampal neurons involves caspase-1-like proteases as upstream initiators and increased production of superoxide as a main downstream effector. J. Neurosci. 18 (1998) 8186–8197.

    PubMed  CAS  Google Scholar 

  31. Gil, J., Almeida, S., Oliveira, C.R. and Rego, A.C. Cytosolic and mitochondrial ROS in staurosporine-induced retinal cell apoptosis. Free Radic. Biol. Med. 35 (2003) 1500–1514.

    Article  PubMed  CAS  Google Scholar 

  32. Wang, J.Y., Shum, A.Y., Ho, Y.J. and Wang, J.Y. Oxidative neurotoxicity in rat cerebral cortex neurons: synergistic effects of H2O2 and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspase-3. J. Neurosci. Res. 72 (2003) 508–519.

    Article  PubMed  CAS  Google Scholar 

  33. Sathasivam, S., Grierson, A.J. and Shaw, P.J. Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibition. Neuropathol. Appl. Neurobiol. 31 (2005) 467–485.

    Article  PubMed  CAS  Google Scholar 

  34. Bendotti, C., Bao, C.M., Cheroni, C., Grignaschi, G., Lo, C.D., Peviani, M., Tortarolo, M., Veglianese, P. and Zennaro, E. Inter- and intracellular signaling in amyotrophic lateral sclerosis: role of p38 mitogen-activated protein kinase. Neurodegener. Dis. 2 (2005) 128–134.

    Article  PubMed  CAS  Google Scholar 

  35. Veglianese, P., Lo, C.D., Bao, C.M., Magnoni, R., Pennacchini, D., Pozzi, B., Gowing, G., Julien, J.P., Tortarolo, M. and Bendotti, C. Activation of the p38MAPK cascade is associated with upregulation of TNF alpha receptors in the spinal motor neurons of mouse models of familial ALS. Mol. Cell Neurosci. 31 (2006) 218–231.

    Article  PubMed  CAS  Google Scholar 

  36. Strey, C.W., Spellman, D., Stieber, A., Gonatas, J.O., Wang, X., Lambris, J.D. and Gonatas, N.K. Dysregulation of stathmin, a microtubule-destabilizing protein, and up-regulation of Hsp25, Hsp27, and the antioxidant peroxiredoxin 6 in a mouse model of familial amyotrophic lateral sclerosis. Am. J. Pathol. 165 (2004) 1701–1718.

    PubMed  CAS  Google Scholar 

  37. Krishnan, J., Lemmens, R., Robberecht, W. and Van Den, B.L. Role of heat shock response and Hsp27 in mutant SOD1-dependent cell death. Exp. Neurol. 200 (2006) 301–310.

    Article  PubMed  CAS  Google Scholar 

  38. Jin, H.Z., Hwang, B.Y., Kim, H.S., Lee, J.H., Kim, Y.H. and Lee, J.J. Antiinflammatory constituents of Celastrus orbiculatus inhibit the NF-kappaB activation and NO production. J. Nat. Prod. 65 (2002) 89–91.

    Article  PubMed  CAS  Google Scholar 

  39. Chow, A.M. and Brown, I.R. Induction of heat shock proteins in differentiated human and rodent neurons by celastrol. Cell Stress Chaperones 12 (2007) 237–244.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, Y.Q. and Sarge, K.D., Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J. Mol. Med. 85 (2007) 1421–1428.

    Article  PubMed  CAS  Google Scholar 

  41. Nagase, M., Oto, J., Sugiyama, S., Yube, K., Takaishi, Y. and Sakato, N. Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene celastrol. Biosci. Biotechnol. Biochem. 67 (2003)1883–1887.

    Article  PubMed  CAS  Google Scholar 

  42. Yang, H., Chen, D., Cui, Q.C., Yuan, X. and Dou, Q.P. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 66 (2006) 4758–4765.

    Article  PubMed  CAS  Google Scholar 

  43. Yang, H., Murthy, S., Sarkar, F.H., Sheng, S., Reddy, G.P. and Dou, Q.P. Calpain-mediated androgen receptor breakdown in apoptotic prostate cancer cells. J. Cell Physiol. (2008) in press.

  44. Lee, J.H., Koo, T.H., Yoon, H., Jung, H.S., Jin, H.Z., Lee, K., Hong, Y.S. and Lee, J.J. Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochem. Pharmacol. 72 (2006) 1311–1321.

    Article  PubMed  CAS  Google Scholar 

  45. Trott, A., West, J.D., Klaic, L., Westerheide, S.D., Silverman, R.B., Morimoto, R.I. and Morano, K.A. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol. Biol. Cell 19 (2008) 1104–1112.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadett Kalmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalmar, B., Greensmith, L. Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration-evidence for neuroprotective and neurotoxic effects. Cell Mol Biol Lett 14, 319–335 (2009). https://doi.org/10.2478/s11658-009-0002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-009-0002-8

Key words