Skip to main content

Targeted cationic poly(D,L-lactic-co-glycolic acid) nanoparticles for gene delivery to cultured cells


We developed a new targeted cationic nanoparticulate system composed of poly(D,L-lactic-co-glycolic acid) (PLGA), 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and asialofetuin (AF), and found it to be a highly effective formulation for gene delivery to liver tumor cells. The nanoparticles (NP) were prepared by a modified solvent evaporation process that used two protocols in order to encapsulate (NP1 particles) or adsorb (NP2 particles) plasmid DNA. The final particles are in the nanoscale range. pDNA loaded in PLGA/DOTAP/AF particles with high loading efficiency showed a positive surface charge. Targeted asialofetuin-nanoparticles (AF-NP) carrying genes encoding for luciferase and interleukin-12 (IL-12) resulted in increased transfection efficiencies compared to free DNA and to plain (non-targeted) systems, even in the presence of 60% fetal bovine serum (FBS). The results of transfections performed on HeLa cells, defective in asialoglycoprotein receptors (ASGPr-), confirmed the receptor-mediated endocytosis mechanism. In summary, this is the first time that asialoglycoprotein receptor targeting by PLGA/DOTAP/DNA nanoparticles carrying the therapeutic gene IL-12 has been shown to be efficient in gene delivery to liver cancer cells in the presence of a very high concentration of serum, and this could be a potential system for in vivo application.





asialoglycoprotein receptor


Dulbecco’s modified Eagle’s medium-high glucose


1,2-dioleoyl-3-(trimethylammonium propane)


fetal bovine serum






poly(D,L-lactic-co-glycolic acid


scanning electron microscopy


  1. 1.

    Pouton, C.W. and Seymour, L.W. Key issues in non-viral gene delivery. Adv. Drug Deliv. Rev. 46 (2001) 187–203.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    De Smedt, S.C., Demeester, J. and Hennink, W.E. Cationic polymer based gene delivery systems. Pharm. Res. 17 (2000) 113–126.

    PubMed  Article  Google Scholar 

  3. 3.

    Singh, M., Briones, M., Ott, G. and O’Hagan, D. Cationic microparticles: A potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. USA. 97 (2000) 811–816.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Kim, I.S., Lee, S.K., Park, Y.M., Lee, Y.B., Shin, S.C., Lee, K.C. and Oh, I.J. Physicochemical characterization of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int. J. Pharm. 298 (2005) 255–262.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Oster, C.G., Kim, N., Grode, L., Barbu-Tudoran, L., Schaper, A.K., Kaufmann, S.H. and Kissel, T. Cationic microparticles consisting of poly(lactide-co-glycolide) and polyethylenimine as carriers systems for parental DNA vaccination. J. Control. Release 104 (2005) 359–377.

    PubMed  CAS  Google Scholar 

  6. 6.

    Moghimi, S.M., Hunter, A.C. and Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53 (2001) 283–318.

    PubMed  CAS  Google Scholar 

  7. 7.

    Vinogradov, S.V., Bronich, T.K. and Kabanov, A.V. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 54 (2002) 135–147.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Leong, K.W., Mao, H.Q., Truong-Le, V.L., Roy, K., Walsh, S.M. and August, J.T. DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Control. Release 53 (1998) 183–193.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Hirosue, S., Muller, B.G., Mulligan, R.C. and Langer, R. Plasmid DNA encapsulation and release from solvent diffusion nanospheres. J. Control. Release 70 (2001) 231–242.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Ravi Kumar, M. N., Bakowsky, U. and Lehr, C.M. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 25 (2004) 1771–1777.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Rhaese, S., von Briesen, H., Rubsamen-Waigmann, H., Kreuter, J. and Langer, K. Human serum albumin-polyethylenimine nanoparticles for gene delivery. J. Control. Release 92 (2003) 199–208.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Wang, D., Robinson, D.R., Kwon, G.S. and Samuel, J. Encapsulation of plasmid DNA in biodegradable poly(D, L-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J. Control. Release 57 (1999) 9–18.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Hedley, M.L., Curley, J. and Urban, R. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Med. 4 (1998) 365–368.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Diez, S. and Tros de Ilarduya, C. Versatility of biodegradable poly (D,L-lactic-co-glycolic acid) microspheres for plasmid DNA delivery. Eur. J. Pharm. Biopharm. 63 (2006) 188–197.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Arangoa, M.A., Düzgüneş, N. and Tros de ILarduya, C. Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes. Gene Ther. 10 (2003) 5–14.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Wilson, J.M., Grossman, M., Cabrera, J.A., Wu, C.H. and Wu, G.Y. A novel mechanism for achieving transgene persistence in vivo after somatic gene transfer into hepatocytes. J. Biol. Chem. 267 (1992) 11483–11489.

    PubMed  CAS  Google Scholar 

  17. 17.

    Wu, G.Y. and Wu, C.H. Evidence for targeted gene delivery to HepG2 hepatoma cells in vitro. Biochemistry 27 (1988) 887–892.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Martinez-Fong, D., Mullersman, J.E., Purchio, A.F., Armendáriz-Borunda, J. and Martínez-Hernández, A. Nonenzymatic glycosylation of poly-L-lysine: a new tool for targeted gene delivery. Hepatology 20 (1994) 1602–1608.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Zanta, M.A., Boussif, O., Adib, A. and Behr, J.P. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug. Chem. 8 (1997) 839–844.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Ashwell, G. and Morell, A.G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. Relat. Areas Mol. Biol. 41 (1974) 99–128.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Wu, J., Liu, P., Zhu, J.L., Maddukuri, S. and Zern, M.A. Increased liver uptake of liposomes and improved targeting efficacy by labeling with asialofetuin in rodents. Hepatology 27 (1998) 772–778.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Shive, M.S. and Anderson, J.M. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28 (1997) 5–24.

    PubMed  Article  Google Scholar 

  23. 23.

    Labhasetwar, V., Bonadio, J., Goldstein, S., Chen, W. and Levy, R.J. A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle. J. Pharm. Sci. 87 (1998) 1347–1350.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Luo, D., Woodrow-Mumford, K., Belcheva, N. and Saltzman, W.M. Controlled DNA delivery systems. Pharm. Res. 16 (1999) 1300–1308.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Ando, S., Putnam, D., Pack, D.W. and Langer, R. PLGA microspheres containing plasmid DNA: preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J. Pharm. Sci. 88 (1999) 126–130.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Hsu, Y.Y., Hao, T. and Hedley, M.L. Comparison of process parameters for microencapsulation of plasmid DNA in poly(D,L-lactic-co-glycolic) acid microspheres. J. Drug Target. 7 (1999) 313–323.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Panyam, J. and Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55 (2003) 329–347.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Prabha, S. and Labhasetwar, V. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharm. Res. 21 (2004) 354–364.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Cohen, H., Levy, R.J., Gao, J., Fishbein, I., Kousaev, V., Sosnowski, S., Slomkowski, S. and Golomb, G. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 7 (2000) 1896–1905.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Jeong, J.H. and Park, T.G. Poly(L-lysine)-g-poly(D,L-lactic-co-glycolic acid) micelles for low cytotoxic biodegradable gene delivery carriers. J. Control. Release 82 (2002) 159–166.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Walter, E. and Merkle, H.P. Microparticle-mediated transfection of nonphagocytic cells in vitro. J. Drug Target. 10 (2002) 11–21.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Chiou, H.C., Tangco, M.V., Levine, S.M., Robertson, D., Kormis, K., Wu, C.H., and Wu, G.Y. Enhanced resistance to nuclease degradation of nucleic acids complexed to asialoglycoprotein-polylysine carriers. Nucleic Acids Res. 22 (1994) 5439–5446.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Katayose, S. and Kataoka, K. Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer. J. Pharm. Sci. 87 (1998) 160–163.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Zhang, Y. and Anchordoquy, T.J. The role of lipid charge density in the serum stability of cationic lipid/DNA complexes. Biochim. Biophys. Acta 1663 (2004) 143–157.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Simberg, D., Weisman, S., Talmon, Y., Faerman, A., Shoshani, T. and Barenholz, Y. The role of organ vascularization and lipoplex-serum initial contact in intravenous murine lipofection. J. Biol. Chem. 27 (2003) 39858–39865.

    Article  CAS  Google Scholar 

  36. 36.

    Eliyahu, H., Servel, N., Domb, A.J. and Barenholz, Y. Lipoplex-induced hemagglutination: potential involvement in intravenous gene delivery. Gene Ther. 9 (2002) 850–858.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Karmali, P.P., Majeti, B.K., Sreedhar, B. and Chaudhuri, A. In vitro gene transfer efficacies and serum compatibility profiles of novel mono-, di-, and tri-histidinylated cationic transfection lipids: a structure-activity investigation. Bioconjug. Chem. 17 (2006) 159–171.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Tros de Ilarduya, C. and Düzgüneş, N. Efficient gene transfer by transferrin lipoplexes in the presence of serum. Biochim. Biophys. Acta. 1463 (2000) 333–342.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Fischer, D., Bieber, T., Li, Y., Elsasser, H.P. and Kissel, T. A novel nonviral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16 (1999) 1273–1279.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J. and Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24 (2003) 1121–1131.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Simoes, S., Slepushkin, V., Pires, P., Gaspar, R., de Lima, M.P. and Düzgüneş, N. Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Ther. 6 (1999) 1798–1807.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Conchita Tros de Ilarduya.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Díez, S., Miguéliz, I. & Tros de Ilarduya, C. Targeted cationic poly(D,L-lactic-co-glycolic acid) nanoparticles for gene delivery to cultured cells. Cell Mol Biol Lett 14, 347 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

Key words

  • Poly(D,L-lactic-co-glycolic acid) (PLGA)
  • 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP)
  • Asialofetuin
  • Targeted gene delivery
  • Pharmaceutical nanotechnology