Skip to main content

Advertisement

The differentiation of human placenta-derived mesenchymal stem cells into dopaminergic cells in vitro

Article metrics

Abstract

Mesenchymal stem cells (MSCs) constitute an interesting cellular source to promote brain regeneration after Parkinson’s disease. MSCs have significant advantages over other stem cell types, and greater potential for immediate clinical application. The aim of this study was to investigate whether MSCs from the human placenta could be induced to differentiate into dopaminergic cells. MSCs from the human placenta were isolated by digestion and density gradient fractionation, and their cell surface glycoproteins were analyzed by flow cytometry. These MSCs were cultured under conditions promoting differetiation into adipocytes and osteoblasts. Using a cocktail that includes basic fibroblast growth factor (bFGF), all trans retinoic acid (RA), ascorbic acid (AA) and 3-isobutyl-1-methylxanthine (IBMX), the MSCs were induced in vitro to become dopamine (DA) neurons. Then, the expression of the mRNA for the Nestin and tyrosine hydroxylase (TH) genes was assayed via RT-PCR. The expression of the Nestin, dopamine transporter (DAT), neuronal nuclear protein (NeuN) and TH proteins was determined via immunofluorescence. The synthesized and secreted DA was determined via ELISA. We found that MSCs from the human placenta exhibited a fibroblastoid morphology. Flow cytometric analyses showed that the MSCs were positive for CD44 and CD29, and negative for CD34, CD45, CD106 and HLA-DR. Moreover, they could be induced into adipocytes and osteocytes. When the MSCs were induced with bFGF, RA, AA and IBMX, they showed a change in morphology to that of neuronal-like cells. The induced cells expressed Nestin and TH mRNA, and the Nestin, DAT, NeuN and TH proteins, and synthesized and secreted DA. Our results suggest that MSCs from the human placenta have the ability to differentiate into dopaminergic cells.

Abbreviations

AA:

ascorbic acid

bFGF:

basic fibroblast growth factor

DA:

dopamine

DAT:

dopamine transporter

DMEM/F12:

Dulbecco’s modified Eagle’s medium/F12

ESCs:

embryonic stem cells

FBS:

fetal bovine serum

IBMX:

3-isobutyl-1-methylxanthine

MSCs:

mesenchymal stem cells

NeuN:

neuronal nuclear protein

PBS:

phosphate-buffered saline

RA:

all trans retinoic acid

TH:

tyrosine hydroxylase

References

  1. 1.

    Trzaska, K.A., Kuzhikandathil, E.V. and Rameshwar, P. Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells 25 (2007) 2797–2808.

  2. 2.

    Yan, Y., Yang, D., Zarnowska, E.D., Du, Z., Werbel, B., Valliere, C., Pearce, R.A., Thomson, J.A. and Zhang, S.C. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23 (2005) 781–790.

  3. 3.

    Zeng, X., Cai, J., Chen, J., Luo, Y., You, Z.B., Fotter, E., Wang, Y., Harvey, B., Miura, T,, Backman, C., Chen, G.J., Rao, M.S. and Freed, W.J. Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22 (2004) 925–940.

  4. 4.

    Park, C.H., Minn, Y.K., Lee, J.Y., Choi, D.H., Chang, M.Y., Shim, J.W., Ko, J.Y., Koh, H.C., Kang, M.J., Kang, J.S., Rhie, D.J., Lee, Y.S., Son, H., Moon, S.Y., Kim, K.S. and Lee, S.H. In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J. Neurochem. 92 (2005) 1265–1276.

  5. 5.

    Atmani, H., Chappard, D. and Basle, M.F. Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol. J. Cell. Biochem. 89 (2003) 364–372.

  6. 6.

    Ai, C., Todorov, I., Slovak, M.L., Digiusto, D., Forman, S.J. and Shih, C.C. Human marrow-derived mesodermal progenitor cells generate insulin-secreting islet-like clusters in vivo. Stem. Cells. Dev. 16 (2007) 757–770.

  7. 7.

    Porter, R.M., Huckle, W.R., Goldstein, A.S. Effect of dexamethasone withdrawal on osteoblastic differentiation of bone marrow stromal cells. J. Cell. Biochem. 90 (2003) 13–22.

  8. 8.

    Song, S., Kamath, S., Mosquera, D., Zigova, T., Sanberg, P., Vesely, D.L. and Sanchez-Ramos, J. Expression of brain natriuretic peptide by human bone marrow stromal cells. Exp. Neurol. 185 (2004) 191–197.

  9. 9.

    Miao, Z., Jin, J., Chen, L., Zhu, J., Huang, W., Zhao, J., Qian, H. and Zhang, X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell. Biol. Int. 30 (2006) 681–687.

  10. 10.

    Fu, Y.S., Cheng, Y.C., Lin, M.Y., Cheng, H., Chu, P.M., Chou, S.C., Shih, Y.H., Ko, M.H. and Sung, M.S. Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro-potential therapeutic application for Parkinsonism. Stem Cells 24 (2006) 115–124.

  11. 11.

    Bibel, M., Richter, J., Schrenk, K., Tucker, K.L., Staiger, V., Korte, M., Goetz, M. and Barde, Y.A. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat. Neurosci. 7 (2004) 1003–1009.

  12. 12.

    Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E. and Gage, F.H. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl. Acad. Sci. USA 101 (2004) 16659–16664.

  13. 13.

    Zhang, J., Smith, D., Yamamoto, M., Ma, L. and McCaffery, P. The meninges is a source of retinoic acid for the late-developing hindbrain. J. Neurosci. 23 (2003) 7610–7620.

  14. 14.

    Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M. and McKay, R.D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18 (2000) 675–679.

  15. 15.

    Reubinoff, B.E., Itsykson, P., Turetsky, T., Pera, M.F., Reinhartz, E. and Itzik, A., Ben-Hur, T. Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19 (2001) 134–140.

  16. 16.

    Yu, D.H., Lee, K.H., Lee, J.Y., Kim, S., Shin, D.M., Kim, J.H., Lee, Y.S., Lee, Y.S., Oh, S.K., Moon, S.Y., Lee, S.H. and Lee, Y.S. Changes of gene expression profiles during neuronal differentiation of central nervous system precursors treated with ascorbic acid. J. Neurosci. Res. 78 (2004) 29–37.

Download references

Author information

Correspondence to Dong-Mei He.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Mesenchymal stem cell
  • Human
  • Placenta
  • Differentiation
  • Dopamine