Skip to main content
  • Research Article
  • Published:

Transcriptional profiles during the differentiation and maturation of monocyte-derived dendritic cells, analyzed using focused microarrays

Abstract

Dendritic cells (DC) are professional antigen-presenting cells capable of initiating primary immune responses. They have been intensively studied and are used in both basic immunology research and clinical immunotherapy. However, the genetic pathways leading to DC differentiation and maturation remain poorly understood. Using focused microarrays with oligonucletotide probes for 120 genes encoding co-stimulatory molecules, chemokines, chemokine receptors, cytokines, cytokine receptors, TLRs, and several other related molecules, we analyzed the kinetics of gene expression for the overall differentiation process of monocytes into mature DC. In parallel, we compared the transcriptional profiles in DC maturation in the presence of LPS, TNF-α or trimeric CD40L. We found similar transcriptional profiles for early immature DC and immature DC, respectively generated by culturing monocytes with GM-CSF and IL-4 for three or six days. We identified sets of common and stimuli-specific genes, the expression of which changed following stimulation with LPS, TNF-α or CD40L. A dynamic analysis of the entire DC differentiation and maturation process showed that some important inflammatory and constitutive chemokines are transcribed in both immature and mature DC. The correlative expression kinetics of the gene pairs IL1R1/IL1R2, IL15/IL15RA, DC-SIGN/ICAM-2 and DC-SIGN/ICAM-3 imply that they all play crucial roles in mediating DC functions. Thus, our analysis with focused microarrays shed light on the transcriptional kinetics of DC differentiation and maturation, and this method may also prove useful for identifying novel marker genes involved in DC functions.

Abbreviations

CD40L:

CD40 ligand

DC:

dendritic cells

GADD45:

growth arrest and DNA damage gene 45

GM-CSF:

granulocyte-macrophage colony-stimulating factor

LPS:

lipopolysaccharide

MoDC:

monocyte-derived dendritic cells

TLRs:

toll-like receptors

References

  1. Banchereau, J. and Steinman, R. M. Dendritic cells and the control of immunity. Nature 392 (1998) 245–251. DOI: 10.1038/32588.

    Article  PubMed  CAS  Google Scholar 

  2. Caux, C., Dezutter-Dambuyant, C., Schmitt, D. and Banchereau, J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360 (1992) 258–261. DOI: 10.1038/360258a0.

    Article  PubMed  CAS  Google Scholar 

  3. Reid, C., Stackpoole, A., Meager, A. and Tikerpae, J. Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34 progenitors in human bone marrow. J. Immunol. 149 (1992) 2681–2688.

    PubMed  CAS  Google Scholar 

  4. Avigan, D. Dendritic cells: development, function and potential use for cancer immunotherapy. Blood Rev. 13 (1999) 51–64. DOI: 10.1016/S0268-960X(99)90023-1.

    Article  PubMed  CAS  Google Scholar 

  5. Felzmann, T., Witt, V., Wimmer, D., Ressmann, G., Wagner, D., Paul, P., Huttner, K. and Fritsch, G. Monocyte enrichment from leukapharesis products for the generation of DCs by plastic adherence, or by positive or negative selection. Cytotherapy 5 (2003) 391–398. DOI: 10.1080/14653240310003053.

    Article  PubMed  CAS  Google Scholar 

  6. Sallusto, F., Cella, M., Danieli, C. and Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182 (1995) 389–400.

    Article  PubMed  CAS  Google Scholar 

  7. Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A. and Alber, G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184 (1996) 747–752.

    Article  PubMed  CAS  Google Scholar 

  8. de Jong, E.C., Vieira, P.L., Kalinski, P., Schuitemaker, J.H., Tanaka, Y., Wierenga, E.A., Yazdanbakhsh, M. and Kapsenberg, M.L. Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. J. Immunol. 168 (2002) 1704–1709.

    PubMed  Google Scholar 

  9. Vieira, P.L., de Jong, E.C., Wierenga, E.A., Kapsenberg, M.L. and Kaliński, P. Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J. Immunol. 164 (2000) 4507–4512.

    PubMed  CAS  Google Scholar 

  10. Le Naour, F., Hohenkirk, L., Grolleau, A., Misek, D.E., Lescure, P., Geiger, J.D., Hanash, S. and Beretta, L. Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. J. Biol. Chem. 276 (2001) 17920–17931. DOI: 10.1074/jbc.M100156200.

    Article  PubMed  Google Scholar 

  11. Türeci, O., Bian, H., Nestle, F.O., Raddrizzani, L., Rosinski, J.A., Tassis, A., Hilton, H., Walstead, M., Sahin, U. and Hammer, J. Cascades of transcriptional induction during dendritic cell maturation revealed by genome-wide expression analysis. FASEB J. 17 (2003) 836–847.

    Article  PubMed  Google Scholar 

  12. Moschella, F., Maffei, A., Catanzaro, R.P., Papadopoulos, K.P., Skerrett, D., Hesdorffer, C.S. and Harris, P.E. Transcript profiling of human dendritic cells maturation-induced under defined culture conditions: comparison of the effects of tumour necrosis factor alpha, soluble CD40 ligand trimer and interferon gamma. Br. J. Haematol. 114 (2001) 444–457. DOI: 10.1046/j.1365-2141.2001.02953.x.

    Article  PubMed  CAS  Google Scholar 

  13. Messmer, D., Messmer, B. and Chiorazzi, N. The global transcriptional maturation program and stimuli-specific gene expression profiles of human myeloid dendritic cells. Int. Immunol. 15 (2003) 491–503.

    Article  PubMed  CAS  Google Scholar 

  14. Lapteva, N., Ando, Y., Nieda, M., Hohjoh, H., Okai, M., Kikuchi, A., Dymshits, G., Ishikawa, Y., Juji, T. and Tokunaga, K. Profiling of genes expressed in human monocytes and monocyte-derived dendritic cells using cDNA expression array. Br. J. Haematol. 114 (2001) 191–197. DOI: 10.1046/j.1365-2141.2001.02910.x.

    Article  PubMed  CAS  Google Scholar 

  15. Shin, J.W., Jin, P., Fan, Y., Slezak, S., David-Ocampo, V., Khuu, H.M., Read, E.J., Wang, E., Marincola, F.M. and Stroncek, D.F. Evaluation of gene expression profiles of immature dendritic cells prepared from peripheral blood mononuclear cells. Transfusion 48 (2008) 647–657. DOI: 10.1111/j.1537-2995.2007.01615.x.

    Article  PubMed  CAS  Google Scholar 

  16. Lipscomb, M.F. and Masten, B.J. Dendritic cells: immune regulators in health and disease. Physiol. Rev. 82 (2002) 97–130. DOI: 10.1152/physrev.00023.2001.

    PubMed  CAS  Google Scholar 

  17. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B. and Palucka, K. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18 (2000) 767–811. DOI: 10.1146/annurev.immunol.18.1.767.

    Article  PubMed  CAS  Google Scholar 

  18. Jirmanova, L., Jankovic, D., Fornace, A.J.Jr. and Ashwell, J.D. Gadd45alpha regulates p38-dependent dendritic cell cytokine production and Th1 differentiation. J. Immunol. 178 (2007) 4153–4158.

    PubMed  CAS  Google Scholar 

  19. Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95 (1998) 14863–14868.

    Article  PubMed  CAS  Google Scholar 

  20. Soukas, A., Cohen, P., Socci, N.D. and Friedman, J.M. Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev. 14 (2000) 963–980.

    PubMed  CAS  Google Scholar 

  21. Granucci, F., Vizzardelli, C., Virzi, E., Rescigno, M. and Ricciardi-Castagnoli, P. Transcriptional reprogramming of dendritic cells by differentiation stimuli. Eur. J. Immunol. 31 (2001) 2539–2546. DOI: 10.1002/1521-4141(200109)31:9<2539::AID-IMMU2539>3.0.CO;2-9.

    Article  PubMed  CAS  Google Scholar 

  22. Skelton, L., Cooper, M., Murphy, M. and Platt, A. Human immature monocyte-derived dendritic cells express the G protein-coupled receptor GPR105 (KIAA001, P2Y14) and increase intracellular calcium in response to its agonist uridine diphosphoglucose. J. Immunol. 171 (2003) 1941–1949.

    PubMed  CAS  Google Scholar 

  23. Tang, Z. and Saltzman, A. Understanding human dendritic cell biology through gene profiling. Inflamm. Res. 53 (2004) 424–441. DOI: 10.1007/s00011-004-1283-z.

    Article  PubMed  CAS  Google Scholar 

  24. Lindstedt, M., Johansson-Lindbom, B. and Borrebaeck, C.A. Global reprogramming of dendritic cells in response to a concerted action of inflammatory mediators. Int. Immunol. 14 (2002) 1203–1213.

    Article  PubMed  CAS  Google Scholar 

  25. Kanazawa, N., Nakamura, T., Tashiro, K., Muramatsu, M., Morita, K., Yoneda, K., Inaba, K., Imamura, S. and Honjo, T. Fractalkine and macrophage-derived chemokine: T cell-attracting chemokines expressed in T cell area dendritic cells. Eur. J. Immunol. 29 (1999) 1925–1932. DOI: 10.1002/(SICI)1521-4141(199906)29:06<1925::AID-IMMU1925>3.0.CO;2-U.

    Article  PubMed  CAS  Google Scholar 

  26. Papadopoulos, E.J., Sassetti, C., Saeki, H., Yamada, N., Kawamura, T., Fitzhugh, D.J., Saraf, M.A., Schall, T., Blauvelt, A., Rosen, S.D. and Hwang, S.T. Fractalkine, a CX3C chemokine, is expressed by dendritic cells and is up-regulated upon dendritic cell maturation. Eur. J. Immunol. 29 (1999) 2551–2559. DOI: 10.1002/(SICI)1521-4141(199908)29:08<2551::AID-IMMU2551>3.0.CO;2-T.

    Article  PubMed  CAS  Google Scholar 

  27. Sallusto, F., Palermo, B., Lenig, D., Miettinen, M., Matikainen, S., Julkunen, I., Forster, R., Burgstahler, R., Lipp, M. and Lanzavecchia, A. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29 (1999) 1617–1625. DOI: 10.1002/(SICI)1521-4141(199905)29:05<1617::AID-IMMU1617>3.0.CO;2-3.

    Article  PubMed  CAS  Google Scholar 

  28. Alderson, M.R., Armitage, R.J., Tough, T.W., Strockbine, L., Fanslow, W.C. and Spriggs, M.K. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J. Exp. Med. 178 (1993) 669–674.

    Article  PubMed  CAS  Google Scholar 

  29. Relloso, M., Puig-Kröger, A., Pello, O.M., Rodriguez-Fernández, J.L., de la Rosa, G., Longo, N., Navarro, J., Muñoz-Fernandez, M.A., Sanchez-Mateos, P. and Corbi, A.L. DC-SIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-β, and anti-inflammatory agents. J. Immunol. 168 (2002) 2634–2643.

    PubMed  CAS  Google Scholar 

  30. Dietz, A.B., Bulur, P.A., Knutson, G.J., Matasi., R. and Vuk-Pavlovi., S. Maturation of human monocyte-derived dendritic cells studied by microarray hybridization. Biochem. Biophys. Res. Commun. 275 (2000) 731–738. DOI: s10.1006/bbrc.2000.3372.

    Article  PubMed  CAS  Google Scholar 

  31. Hieshima, K., Imai, T., Opdenakker, G., Van Damme, J., Kusuda, J., Tei, H., Sakaki, Y., Takatsuki, K., Miura, R., Yoshie, O. and Nomiyama, H. Molecular cloning of a novel human CC chemokine liver and activationregulated chemokine (LARC) expressed in liver. Chemotactic activity for lymphocytes and gene localization on chromosome 2. J. Biol. Chem. 272 (1997) 5846–5853.

    Article  PubMed  CAS  Google Scholar 

  32. Homey, B., Dieu-Nosjean, M.C., Wiesenborn, A., Massacrier, C., Pin, J.J., Oldham, E., Catron, D., Buchanan, M.E., Muller, A., deWaal Malefyt, R., Deng, G., Orozco, R., Ruzicka, T., Lehmann, P., Lebecque, S., Caux, C. and Zlotnik, A. Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis. J. Immunol. 164 (2000) 6621–6632.

    PubMed  CAS  Google Scholar 

  33. Dauer, M., Obermaier, B., Herten, J., Haerle, C., Pohl, K., Rothenfusser, S., Schnurr, M., Endres, S. and Eigler, A. Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors, J. Immunol. 170 (2003) 4069–4076.

    PubMed  CAS  Google Scholar 

  34. Olas, K., Butterweck, H., Teschner, W., Schwarz, H.P. and Reipert, B. Immunomodulatory properties of human serum immunoglobulin A: anti-inflammatory and pro-inflammatory activities in human monocytes and peripheral blood mononuclear cells. Clin. Exp. Immunol. 140 (2005) 478–490. DOI: 10.1111/j.1365-2249.2005.02779.x.

    Article  PubMed  CAS  Google Scholar 

  35. Lu, Y., Liu, Y., Fukuda, K., Nakamura, Y., Kumagai, N. and Nishida, T. Inhibition by triptolide of chemokine, proinflammatory cytokine, and adhesion molecule expression induced by lipopolysaccharide in corneal fibroblasts. Invest. Ophthalmol. Vis. Sci. 47 (2006) 3796–3800. DOI: 10.1167/iovs.06-0319.

    Article  PubMed  Google Scholar 

  36. Blanco, P., Palucka, A.K., Pascual, V. and Banchereau, J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 19 (2008) 41–52. DOI: 10.1016/j.cytogfr.2007.10.004.

    Article  PubMed  CAS  Google Scholar 

  37. Nolte, M.A., Leibundgut-Landmann, S., Joffre, O. and Reis e Sousa, C. Dendritic cell quiescence during systemic inflammation driven by LPS stimulation of radioresistant cells in vivo. J. Exp. Med. 204 (2007) 1487–1501. DOI: 10.1084/jem.20070325.

    Article  PubMed  CAS  Google Scholar 

  38. Anisowicz, A., Messineo, M., Lee, S.W. and Sager, R. An NF-kappa B-like transcription factor mediates IL-1/TNF-alpha induction of gro in human fibroblasts. J. Immunol. 147 (1991) 520–527.

    PubMed  CAS  Google Scholar 

  39. Bunting, K., Rao, S., Hardy, K., Woltring, D., Denyer, G.S., Wang, J., Gerondakis, S. and Shannon, M.F. Genome-wide analysis of gene expression in T cells to identify targets of the NF-kappa B transcription factor c-Rel. J. Immunol. 178 (2007) 7097–7109.

    PubMed  CAS  Google Scholar 

  40. Zhan, Q., Lord, K.A., Alamo, I.Jr., Hollander, M.C., Carrier, F., Ron, D., Kohn, K.W., Hoffman, B., Liebermann, D.A. and Fornace, A.J.Jr. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol. Cell. Biol. 14 (1994) 2361–2371.

    PubMed  CAS  Google Scholar 

  41. Smith, M.L., Ford, J.M., Hollander, M.C., Bortnick, R.A., Amundson, S.A., Seo, Y.R., Deng, C.X., Hanawalt, P.C. and Fornace, A.J.Jr. p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol. Cell. Biol. 20 (2000) 3705–3714.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, X.W., Zhan, Q., Coursen, J.D., Khan, M.A., Kontny, H.U., Yu, L., Hollander, M.C., O’Connor, P.M., Fornace, A.J.Jr. and Harris, C.C. GADD45 induction of a G2/M cell cycle checkpoint. Proc. Nat. Acad. Sci. USA 96 (1999) 3706–3711.

    Article  PubMed  CAS  Google Scholar 

  43. Takekawa, M. and Saito, H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95 (1998) 521–530. DOI: 10.1016/S0092-8674(00)81619-0.

    Article  PubMed  CAS  Google Scholar 

  44. Frasca, L., Fedele, G., Deaglio, S., Capuano, C., Palazzo, R., Vaisitti, T., Malavasi, F. and Ausiello, C.M. CD38 orchestrates migration, survival, and Th1 immune response of human mature dendritic cells. Blood 107 (2006) 2392–2399. DOI: 10.1182/blood-2005-07-2913.

    Article  PubMed  CAS  Google Scholar 

  45. Kaliński, P., Schuitemaker, J.H., Hilkens, C.M., Wierenga, E.A. and Kapsenberg, M.L. Final maturation of dendritic cells is associated with impaired responsiveness to IFN-gamma and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J. Immunol. 162 (1999) 3231–3236.

    PubMed  Google Scholar 

  46. De Smaele, E., Zazzeroni, F., Papa, S., Nguyen, D.U., Jin, R., Jones, J., Cong, R. and Franzoso, G. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414 (2001) 308–313. DOI: 10.1038/35104560.

    Article  PubMed  Google Scholar 

  47. Zazzeroni, F., Papa, S., Algeciras-Schimnich, A., Alvarez, K., Melis, T., Bubici, C., Majewski, N., Hay, N., De Smaele, E., Peter, M.E. and Franzoso, G. Gadd45 beta mediates the protective effects of CD40 costimulation against Fas-induced apoptosis. Blood 102 (2003) 3270–3279. DOI: 10.1182/blood-2003-03-0689.

    Article  PubMed  CAS  Google Scholar 

  48. Josien, R., Li, H.L., Ingulli, E., Sarma, S., Wong, B.R., Vologodskaia, M., Steinman, R.M. and Choi, Y. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J. Exp. Med. 191 (2000) 495–502.

    Article  PubMed  CAS  Google Scholar 

  49. Wong, B.R., Josien, R., Lee, S.Y., Sauter, B., Li, H.L., Steinman, R.M. and Choi, Y. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186 (1997) 2075–2080.

    Article  PubMed  CAS  Google Scholar 

  50. Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood 87 (1996) 2095–2147.

    PubMed  CAS  Google Scholar 

  51. Neumann, D., Kollewe, C., Martin, M.U. and Boraschi, D. The membrane form of the type II IL-1 receptor accounts for inhibitory function. J. Immunol. 165 (2000) 3350–3357.

    PubMed  CAS  Google Scholar 

  52. Orlando, S., Polentarutti, N. and Mantovani, A. Selectivity release of the type II decoy IL-1 receptor. Cytokine 12 (2000) 1001–1006. DOI: 10.1006/cyto.1999.0601.

    Article  PubMed  CAS  Google Scholar 

  53. Lang, D., Knop, J., Wesche, H., Raffetseder, U., Kurrle, R., Boraschi, D. and Martin, M.U. The type II IL-1 receptor interacts with the IL-1 receptor accessory protein: a novel mechanism of regulation of IL-1 responsiveness. J. Immunol. 161 (1998) 6871–6877.

    PubMed  CAS  Google Scholar 

  54. O’Neill, L. IL-1 versus TNF in arthritis? Trends Immunol. 22 (2001) 353–354. DOI: 10.1016/S1471-4906(01)01992-5.

    Google Scholar 

  55. Eriksson, U., Kurrer, M.O., Sonderegger, I., Iezzi, G., Tafuri, A., Hunziker, L., Suzuki, S., Bachmaier, K., Bingisser, R.M., Penninger, J.M. and Kopf, M. Activation of dendritic cells through the interleukin 1 receptor 1 is critical for the induction of autoimmune myocarditis. J. Exp. Med. 197 (2003) 323–331.

    Article  PubMed  CAS  Google Scholar 

  56. Ferlazzo, G., Pack, M., Thomas, D., Paludan, C., Schmid, D., Strowig, T., Bougras, G., Muller, W.A., Moretta, L. and Münz, C. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc. Natl. Acad. Sci. USA 101 (2004) 16606–16611. DOI: 10.1073/pnas.0407522101.

    Article  PubMed  CAS  Google Scholar 

  57. Mortier, E., Woo, T., Advincula, R., Gozalo, S. and Ma, A. IL-15R chaperones IL-15 to stable dendritic cell membrane complexes that activate NK cells via trans presentation. J. Exp. Med. 205 (2008) 1213–1225.

    Article  PubMed  CAS  Google Scholar 

  58. Mattei, F., Schiavoni, G., Belardelli, F. and Tough, D.F. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J. Immunol. 167 (2001) 1179–1187.

    PubMed  CAS  Google Scholar 

  59. Dubois, S.P., Waldmann, T.A. and Müller, J.R. Survival adjustment of mature dendritic cells by IL-15. Proc. Natl. Acad. Sci. USA 102 (2005) 8662–8667. DOI: 10.1073/ pnas.0503360102.

    Article  PubMed  CAS  Google Scholar 

  60. Geijtenbeek, T.B., Krooshoop, D.J., Bleijs, D.A., van Vliet, S.J., van Duijnhoven, G.C., Grabovsky, V., Alon, R., Figdor, C.G. and van Kooyk, Y. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat. Immunol. 1 (2000) 353–357. DOI: 10.1038/79815.

    Article  PubMed  CAS  Google Scholar 

  61. Geijtenbeek, T.B., Torensma, R., van Vliet, S.J., van Duijnhoven, G.C., Adema, G.J., van Kooyk, Y. and Figdor, C.G. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100 (2000) 575–585. DOI: 10.1016/S0092-8674(00)80693-5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueguang Zhang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, W., Fei, M., Zhu, Y. et al. Transcriptional profiles during the differentiation and maturation of monocyte-derived dendritic cells, analyzed using focused microarrays. Cell Mol Biol Lett 14, 587–608 (2009). https://doi.org/10.2478/s11658-009-0023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-009-0023-3

Key words