Skip to main content

Arginine methylation analysis of the splicing-associated SR protein SFRS9/SRP30C

Abstract

The human SFRS9/SRp30c belongs to the SR family of splicing regulators. Despite evidence that members of this protein family may be targeted by arginine methylation, this has yet to be experimentally addressed. In this study, we found that SFRS9 is a target for PRMT1-mediated arginine methylation in vitro, and that it is immunoprecipitated from HEK-293 lysates by antibodies that recognize both mono- and dimethylated arginines. We further observed that upon treatment with the methylation inhibitor Adox, the fluorescent EGFP-SFRS9 re-localizes to dot-like structures in the cell nucleus. In subsequent confocal analyses, we found that EGFP-SFRS9 localizes to nucleoli in Adox-treated cells. Our findings indicate the importance of arginine methylation for the subnuclear localization of SFRS9.

Abbreviations

Adox:

adenosine-2′,3′-dialdehyde

Ki-1/57:

the 57-kDa protein antigen detected by the Ki-1 antibodies

mAB:

monoclonal antibodies

References

  1. Wang, Z. and Burge, C.B. Splicing regulation: From a parts list of regulatory elements to an integrated splicing code. RNA 14 (2008) 802–813.

    PubMed  Article  CAS  Google Scholar 

  2. Reed, R. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr. Opin. Genet. Dev. 6 (1996) 215–220.

    PubMed  Article  CAS  Google Scholar 

  3. Chew, S.L., Liu, H.X., Mayeda, A. and Krainer, A.R. Evidence for the function of an exonic splicing enhancer after the first catalytic step of premRNA splicing. Proc. Natl. Acad. Sci. USA 96 (1999) 10655–10660.

    PubMed  Article  CAS  Google Scholar 

  4. Hertel, K.J. and Graveley, B.R. RS domains contact the pre-mRNA throughout spliceosome assembly. Trends Biochem. Sci. 30 (2005) 115–118.

    PubMed  Article  CAS  Google Scholar 

  5. Boisvert, F.M., Côté, J., Boulanger, M.C. and Richard, S. A proteomic analysis of arginine-methylated protein complexes. Mol. Cell. Proteomics 2 (2003) 1319–1330.

    PubMed  Article  CAS  Google Scholar 

  6. Godin, K.S. and Varani, G. How arginine-rich domains coordinate mRNA maturation events. RNA Biol. 4 (2007) 69–75.

    PubMed  CAS  Google Scholar 

  7. Letunic, I., Doerks, T., and Bork, P. SMART 6: recent updates and new developments. Nucleic Acids Res. 37 (2009) D229–322.

    PubMed  Article  CAS  Google Scholar 

  8. Passos, D.O., Bressan, G.C., Nery, F.C. and Kobarg, J. Ki-1/57 interacts with PRMT1 and is a substrate for arginine methylation. FEBS J. 273 (2006) 3946–3961.

    PubMed  Article  CAS  Google Scholar 

  9. Passos. D.O., Quaresma, J.C., and Kobarg, J. The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization. Biochem. Biophys. Res. Commun. 346 (2006) 517–525.

    PubMed  Article  CAS  Google Scholar 

  10. De Leeuw, F., Zhang, T., Wauquier, C., Huez, G., Kruys, V., and Gueydan C. The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. Exp. Cell. Res. 313 (2007) 4130–4144.

    PubMed  Article  Google Scholar 

  11. Cheng, D., Cote, J., Shaaban, S. and Bedford, M.T. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell. 25 (2007) 71–83.

    PubMed  Article  Google Scholar 

  12. Petersen-Mahrt, S.K., Estmer, C., Ohrmalm, C., Matthews, D.A., Russell, W.C. and Akusjarvi, G. The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J. 18 (1999) 1014–1024.

    PubMed  Article  CAS  Google Scholar 

  13. Nery, F.C., Rui, E., Kuniyoshi, T.M. and Kobarg, J. Evidence for the interaction of the regulatory protein Ki-1.57 with p53 and its interacting proteins. Biochem. Biophys. Res. Commun. 341 (2006) 847–855.

    PubMed  Article  CAS  Google Scholar 

  14. Tadesse, H., Deschenes-Furry, J., Boisvenue, S. and Côté, J. KH-type splicing regulatory protein interacts with survival motor neuron protein and is misregulated in spinal muscular atrophy. Hum. Mol. Genet. 17 (2008) 506–524.

    PubMed  Article  CAS  Google Scholar 

  15. Raffetseder, U., Frye, B., Rauen, T., Jurchott, K., Royer, H.D., Jansen, P.L. and Mertens, P.R. Splicing factor SRp30c interaction with Y-box protein-1 confers nuclear YB-1 shuttling and alternative splice site selection. J. Biol. Chem. 278 (2003) 18241–18248.

    PubMed  Article  CAS  Google Scholar 

  16. Lyon, C.E., Bohmann, K., Sleeman, J. and Lamond, A.I. Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus. Exp. Cell. Res. 230 (1997) 84–93.

    PubMed  Article  CAS  Google Scholar 

  17. Lamond, A.I. and Spector, D.L. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell. Biol. 4 (2003) 605–612.

    PubMed  Article  CAS  Google Scholar 

  18. Boisvert, F.M., van Koningsbruggen, S., Navascués, J. and Lamond, A.I. The multifunctional nucleolus. Nat. Rev. Mol. Cell. Biol. 8 (2007) 574–585.

    PubMed  Article  CAS  Google Scholar 

  19. Gerbi, S.A., Borovjagin, A.V. and Lange, T.S. The nucleolus: a site of ribonucleoprotein maturation. Curr. Opin. Cell Biol. 15 (2003) 318–325.

    PubMed  Article  CAS  Google Scholar 

  20. Lange, T.S. and Gerbi, S.A. Transient nucleolar localization of U6 small nuclear RNA. Mol. Biol. Cell 11 (2000) 2419–2428.

    PubMed  CAS  Google Scholar 

  21. Gerbi, S.A. and Lange, T.S. All small nuclear RNAs (snRNAs) of the (U4/U6.U5) tri-snRNP localize to nucleoli; identification of the nucleolar localization element of U6 snRNA. Mol. Biol. Cell 13 (2002) 3123–3137.

    PubMed  Article  CAS  Google Scholar 

  22. Lai, M.C., Kuo, H.W., Chang, W.C. and Tarn, W.Y. A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J. 22 (2003) 1359–1369.

    PubMed  Article  CAS  Google Scholar 

  23. Wagner, S., Chiosea, S. and Nickerson, J. A. The spatial targeting and nuclear matrix binding domains of SRm160. Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 3269–3274.

    PubMed  Article  CAS  Google Scholar 

  24. Andersen, J.S., Lyon, C.E., Fox, A.H., Leung, A.K., Lam, Y.W., Steen, H., Mann, M. and Lamond, A.I. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12 (2002) 1–11.

    PubMed  Article  Google Scholar 

  25. Leung, A.K., Andersen, J.S., Mann, M. and Lamond, A.I. Bioinformatic analysis of the nucleolus. Biochem. J. 376 (2003) 553–569.

    PubMed  Article  CAS  Google Scholar 

  26. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. and Higgins, D.G. ClustalW2 and ClustalX version 2. Bioinformatics 23 (2007) 2947–2948.

    PubMed  Article  CAS  Google Scholar 

  27. Chen, H., Xue, Y., Huang, N., Yao, X. and Sun, Z. MeMo: a web tool for prediction of protein methylation modifications. Nucleic Acids Res. 34 (2006) 249–253.

    Article  Google Scholar 

  28. Assmann, E.M., Alborghetti, M.R., Camargo, M.E. and Kobarg, J. FEZ1 dimerization and interaction with transcription regulatory proteins involves its coiled-coil region. J. Biol. Chem. 281 (2006) 9869–9881.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Kobarg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bressan, G.C., Moraes, E.C., Manfiolli, A.O. et al. Arginine methylation analysis of the splicing-associated SR protein SFRS9/SRP30C. Cell Mol Biol Lett 14, 657–669 (2009). https://doi.org/10.2478/s11658-009-0024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-009-0024-2

Key words

  • Nuclear bodies
  • Speckles
  • RGG boxes
  • Arginine methylation
  • Protein-protein interaction