Skip to main content
  • Research Article
  • Published:

Increased expression of PAD2 after repeated intracerebroventricular infusions of soluble Aβ25–35 in the Alzheimer’s disease model rat brain: Effect of memantine

Abstract

Peptidylarginine deiminases (PADs) convert the arginine residues in proteins into citrulline residues in a Ca2+-dependent manner. We previously showed that a bilateral injection of ibotenic acid into the rat nucleus basalis magnocellularis elevated the PAD2 activity in the hippocampus and striatum. In this study, we examined whether repeated intracerebroventricular infusions of soluble Aβ25–35 would affect the PAD2 expression in any regions of the rat brain. We also assessed the protective effect of memantine on Aβ-induced PAD2 alterations. The infusion of Aβ25–35 increased the activity and protein level of PAD2 in the hippocampus, and co-treatment with memantine suppressed these changes. An immunohistochemical analysis showed that an increased level of PAD2 was coincident with GFAP-positive astrocytes and CD11b-positive microglia. In addition, immunofluoresecence staining revealed that citrullinepostive immunoreactivity coincided with the occurrence of GFAP-positive astrocytes. Co-treatment with memantine reversed the activation of the astrocytes and microglia, thus attenuating the PAD2 increment. These biochemical and immunohistochemical results suggest that PAD2 might play an important role in the pathology of early Alzheimer’s disease, and may correlate with the changes in glial cells that are recovered by memantine treatment.

Abbreviations

Aβ:

amyloidβ

AD:

Alzheimer’s disease

GFAP:

glial fibrillary acidic protein

PAD:

peptidylarginine deiminase

References

  1. Watanabe, K., Akiyama, K., Hikichi, K., Ohtsuka, R., Okuyama, A. and Senshu, T. Combined biochemical and immunohistochemical comparison of peptidylarginine deiminases present in various tissues. Biochim. Biophys. Acta 966 (1988) 375–383.

    PubMed  CAS  Google Scholar 

  2. Terakawa, H., Takahara, H. and Sugawara, K. Three types of peptidylarginine deiminase: characterization and tissue distribution. J. Biochem. (Tokyo) 110 (1991) 661–666.

    CAS  Google Scholar 

  3. Ishigami, A., Asaga, H., Ohsawa, T., Akiyama, K. and Maruyama, N. Peptidylarginine deiminase type I, type II, type III and type IV are expressed in rat epridermis. Biomed. Res. 22 (2001) 63–65.

    CAS  Google Scholar 

  4. Vossenaar, E.R., Zendman, A.J.W., van Venrooj, W.J. and Pruijn, G.J.M. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. BioEssays 25 (2003) 1106–1118.

    Article  PubMed  CAS  Google Scholar 

  5. Asaga, H. and Ishigami, A. Protein deimination in the rat brain: generation of citulline-containing proteins in cerebrum perfused with oxygen-deprived media. Biomed. Res. 21 (2000) 197–205.

    CAS  Google Scholar 

  6. Asaga, H. and Ishigami, A. Protein deimination in the rat brain after kainite administration: citulline-containing proteins as a novel marker of neurodegeneration. Neurosci. Lett. 299 (2001) 5–8.

    Article  PubMed  CAS  Google Scholar 

  7. Asaga, H., Akiyama, K., Ohsawa, T. and Ishigami, A. Increased and type IIspecific expression of peptidylarginine deiminase in activated-microglia but not hyperplastic astrocytes following kainic acid-evoked neurodegeration in the rat brain. Neurosci. Lett. 326 (2002) 129–132.

    Article  PubMed  CAS  Google Scholar 

  8. Cleary, J.P., Walsh, D.M., Hofmeister, J.J., Shankar, G.M., Kuskowski, M.A., Selkoe, D.J. and Ashe, K.H. Natural oligomers of the amyloid β-protein specifically disrupt the memory of the learned behavior. Nat. Neurosci. 8 (2005) 79–84.

    Article  PubMed  CAS  Google Scholar 

  9. Miguel-Hidalgo, J.J., Alvarez, X.A., Cacabelos, R. and Quack, G. Neuroprotection by memantine against neurodegeneration induced by β-amyloid 1-40. Brain Res. 958 (2002) 210–221.

    Article  PubMed  CAS  Google Scholar 

  10. Song, M.S., Rauw, G., Baker, G.B. and Kar, S. Memantine protects rat cortical cultured neurons against β-amyloid-induced toxicity by attenuating tau. Eur. J. Neurosci. 28 (2008) 1989–2002.

    Article  PubMed  CAS  Google Scholar 

  11. Demuro, A., Mina, E., Kayed, R., Milton, S.C. and Glabe, C.G. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 17 (2005) 17294–17300.

    Article  Google Scholar 

  12. Ahmed, M.M., Hoshino, H., Chikuma, T., Yamada, M. and Kato, T. Effect of memantine on the levels of glial cells, neuropeptides, and peptide degrading enzymes in rat brain regions of ibotenic acid-treated Alzheimer’s disease model. Neuroscience 126 (2004) 639–649.

    Article  PubMed  CAS  Google Scholar 

  13. Ishigami, A., Ohsawa, T., Hiratsuka, M., Taguchi, H., Kobayashi, S., Saito, Y., Murayama, S., Asaga, H., Toda, T., Kimura, N. and Maruyama, N. Abnormal accumulation of citullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J. Neurosci. Res. 80 (2005) 120–128.

    Article  PubMed  CAS  Google Scholar 

  14. Cullen, W.K., Wu, J., Anwyl, R. and Rowan, M.J. β-amyloid produces a delayed NMDA receptor dependent reduction in synaptic transmission in rat hippocampus. Neuroreport 8 (1996) 87–92.

    Article  PubMed  CAS  Google Scholar 

  15. Nakashima, K., Hagiwara, T. and Yamada, M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J. Biol. Chem. 277 (2002) 49562–49568.

    Article  PubMed  CAS  Google Scholar 

  16. Musse, A.A., Li, Z., Ackerley, C.A., Bienzle, D., Lei, H., Poma, R., Harauz, G., Moscarello, M.A. and Mastronardi, F.G. Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis. Model Mech. 1 (2008) 229–240.

    Article  PubMed  CAS  Google Scholar 

  17. Arif, M., Yamada, M., Chikuma, T., Ahmed, M. M. and Kato, T. Suppressive effect of clozapine but not haloperidol on the increases of neuropeptide-degrading enzymes and glial cells in (+) MK-801-treated rat brain regions. Neurosci. Res. 57 (2007) 248–258.

    Article  PubMed  CAS  Google Scholar 

  18. Akiyama, K., Sakurai, Y., Asou, H. and Senshu, T. Localization of peptidylarginine deiminase type II in a stage-specific immature oligodendrocyte from rat cerebral hemisphere. Neurosci. Lett. 274 (1999) 53–55.

    Article  PubMed  CAS  Google Scholar 

  19. Asaga, H. and Senshu T. Combined biochemical and immunocytochemical analyses of postmortem protein deimination in the rat spinal cord. Cell. Biol. Int. 17 (1993) 525–532.

    Article  PubMed  CAS  Google Scholar 

  20. Farnandez-Tome, P., Brera, B., Arevalo, M.A. and Ceballos, M.L. Betaamyloid 25-35 inhibits glutamate uptake in cultured neurons and astrocytes: modulation of uptake as a survival mechanism. Neurobiol. Dis. 15 (2004) 580–589.

    Article  Google Scholar 

  21. Brown, D.R. Neurons depend on astrocytes in a colculture system for protection from glutamate toxicity. Mol. Cell. Neurosci. 13 (1999) 379–389.

    Article  PubMed  CAS  Google Scholar 

  22. Piet, R., Poulain, D.A. and Oliet, S.H. Contribution of astrocytes to synaptic transmission in the rat supraoptic nucleus. Neurochem. Intl. 45 (2004) 251–257.

    Article  CAS  Google Scholar 

  23. Eikelenboom, P., Bate, C., Van Gool, W.A., Hoozemans, J.J.M., Rozemuller, J.M., Veerhuis, R. and Williams, A. Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40 (2002) 232–239.

    Article  PubMed  CAS  Google Scholar 

  24. Mitrasinovic, O.M. and Murphy, G.M. Jr. Accelerated phagocytosis of amyloid-beta by mouse and human microglia over expressing the macrophage colony-stimulating factor receptor. J. Biol. Chem. 277 (2002) 29889–29896.

    Article  PubMed  CAS  Google Scholar 

  25. Ling, F.A., Hui, D.Z. and Ji, S.M. Protective effect of recombinant somatotropin on amyloid β-peptide induced learning and memory deficits in mice. Growth Horm. IGF Res. 17 (2007) 336–341.

    Article  PubMed  CAS  Google Scholar 

  26. Mc Lean, C.A., Cherny, R.A., Fraser, F.W., Fuller, S.J., Smith, M.J., Beyreuther, K., Bush, A.I. and Masters, C.L. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46 (1999) 860–866.

    Article  Google Scholar 

  27. Louw, C., Gordon, A., Johnston, N., Mollatt, C., Bradley, G. and Whiteley, C.G. Arginine deiminases: Therapeutic tools in the etiology and pathogenesis of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 22 (2007) 121–126.

    Article  PubMed  CAS  Google Scholar 

  28. Walsh, D.M., Klyubin, I., Fadeeva, J., William, K., Cullen, W., Anwyl, R., Wolfe, M., Rowan, M. and Selkoe, D. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416 (2002) 535–539.

    Article  PubMed  CAS  Google Scholar 

  29. Minkeviciene, R., Banerjee, P. and Tanila, H. Memantine improves spatial learning in a transgenic mouse model of Alzheimer’s disease. J. Pharmacol. Exp. Ther. 311 (2004) 677–682.

    Article  PubMed  CAS  Google Scholar 

  30. Blanchard, A.P., Guillemette, G. and Boulay, G. Memantine potentiates agonist-induced Ca2+ responses in HEK 293 cells. Cell Physiol. Biochem. 22 (2008) 205–214.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Arif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arif, M., Kato, T. Increased expression of PAD2 after repeated intracerebroventricular infusions of soluble Aβ25–35 in the Alzheimer’s disease model rat brain: Effect of memantine. Cell Mol Biol Lett 14, 703–714 (2009). https://doi.org/10.2478/s11658-009-0029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-009-0029-x

Key words