Skip to main content

The interaction of PVP complexes of gossypol and its derivatives with an artificial membrane lipid matrix

Abstract

In this paper, we present the results of a study on the membrane-active properties of gossypol, its derivatives and their polyvinylpyrrolidone complexes as assessed by differential scanning calorimetry and by the fluorescent probe method. The latter revealed the change in polarization of the incident radiation caused by the action of the polyphenol on the artificial membrane lipid matrix.

Abbreviations

AOA:

antioxidant activity

DMPC:

dimyristoylphosphatidylcholine

DPH:

1,6-diphenyl-1,3,5-hexatriene

DPPC:

dipalmitoyl-phosphatidylcholine

DSC:

differential scanning calorimetry

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PVP:

N-polyvinylpyrrolidone (8000 MM)

References

  1. Lui, G., Lyle, K.C. and Cao, J. Trial of gossypol as a male contraceptive. in: S.J. Segal, Editor. Gossypol: a potential contraceptive for men, Plenum Press, New York (1985) 9–16.

    Google Scholar 

  2. Montamat, E.E., Burgos, C., Gerez de Burgos, N.M., Roail, L.E. and Blanco, A. Inhibitory action of gossypol on enzymes and growth of Trypanosoma cruzi. Science 218 (1982) 288–289.

    Article  PubMed  CAS  Google Scholar 

  3. Raldof, R.J., Deck, L.M, Royer, R.E., and Vander Jagt, D.L. Antiviral activities of gossypol and its derivatives against herpes simplex virus type II. Pharmacol. Res. Commun. 18 (1986) 1063–1073.

    Article  Google Scholar 

  4. Benhaim, P., Mathes, S.J., Hunt, T.K., Scheuenstuhl, H. and Benz, C.C. Induction of neutrophil Mac-I integrin expression and superoxide production by the medicinal plant extract gossypol. Inflammation 18 (1994) 443–458.

    Article  PubMed  CAS  Google Scholar 

  5. Hou, D.X., Uto, T., Tong, X., Takeshita, T., Tanigawa, S., Imamura, I., Ose, T. and Furii, M. Involvement of reactive oxygen species-independent mitochondrial pathway in gossypol-induced apoptosis. Arch. Biochem. Biophys. 428 (2004) 179–187.

    Article  PubMed  CAS  Google Scholar 

  6. Baram, N.I., Ismailov, A.I., Ziyaev, H.Z., and Redzepov, K.Dz. Biologic activity of gossypol and its derivatives. Chem. Nat. Comp. 40 (2004) 199–205.

    Article  CAS  Google Scholar 

  7. Royer, R.E., Mills, R.G., Deck, L.M., Mertz, G.J. and Jagt, D.L.V. Inhibition of human immunodeficiency virus type I replication by derivatives of gossypol. Pharmacol. Res. 24 (1991) 407–412.

    Article  PubMed  CAS  Google Scholar 

  8. Lin, T.S., Schinazi, R.F., Zhu, J., Birks, E., Carbone, R., Si, Y., Wu, K., Huang, L. and Prusoff, W.H. Anti-HIV-1 activity and cellular pharmacology of various analogs of gossypol. Biochem. Pharmacol. 46 (1993) 251–255.

    PubMed  CAS  Google Scholar 

  9. Waites, G.M., Wang, C. and Griffin, P.D. Gossypol: reasons for its failure to be accepted as a safe, reversible male antifertility drug. Int. J. Androl. 21 (1998) 8–12.

    Article  PubMed  CAS  Google Scholar 

  10. Castelli, F., Pitarres, G. and Giammona, K. Influence of different parameters on drug release from hydrogel systems to a biomembrane model. Evaluation by differential scanning calorimetry technique. Biomaterials 8 (2000) 821–833.

    Article  Google Scholar 

  11. Dodou, K. Investigation on gossypol: Past and present development. Expert Opin. Investig. Drugs 14/11 (2005) 1419–1495.

    Article  CAS  Google Scholar 

  12. Gordienko, N.V., Zamaraeva, M.V, Gagelgans, A.I., Baram, N.I. and Ismailov, A.I. Membranotropic action of gossypol and its derivatives 1. Influence on functional characteristics of membranes of sarcoplasmic reticulum. Biol. Membranes 10/2 (1993) 462–469.

    Google Scholar 

  13. Gordienko, N.V., Zamaraeva, M.V., Gagelgans, A.I., Salakhutdinov, B.A., Aripov, T.F. and Ismailov, A.I. Membranotropic action of gossypol and its derivatives. 2 Study of structural reconstruction of membranes induced by gossypol and its derivatives. Biol. Membranes 10/2 (1993) 470–477.

    Google Scholar 

  14. Aripov, T.F., Rozenshtein, I.A., Salakhutdinov, B.A., Lev, A.A. and Gotlib, V.A. The influence of cytotoxins from Central Asian cobra venom and melettin from bee venom on thermodynamic properties of phospholipids bilayer. Gen. Physiol. Biophys. 6 (1987) 343–357.

    PubMed  CAS  Google Scholar 

  15. Kovacic, P. Mechanism of drug and toxic actions of gossypol: Focus on reactive oxygen species and electron transfer. Curr. Med. Chem. 10 (2003) 2711–2718.

    Article  PubMed  CAS  Google Scholar 

  16. Tanphaichitr, N., Namking, M., Tupper, S., Hansen, C. and Wong, P. Gossypol effects on the structure and dynamics of phospholipid bilayers: A FT-IR study. Chem. Phys. Lipids 75 (1995) 119–125.

    Article  CAS  Google Scholar 

  17. Ivkov, V.G. and Berestovsky, G.N. Dynamic structure of lipid bilayer, in: Ivkov, V.G. and Berestovsky, G.N. Publishing House Nauka, Moscow (1981) 293.

    Google Scholar 

  18. Wesołowska, O., Hendrich, A.B., cłania-Pietrzak, B., Wiśniewski, J., Molnar, J., Ocsovszki, I. and Michalak, K. Perturbation of the lipid phase of a membrane is not involved in the modulation of MRP1 transport activity by flavonoids. Cell. Mol. Biol. Lett. 14 (2009) 199–221.

    Article  PubMed  CAS  Google Scholar 

  19. McDaniel, R., McIntosh, T. and Simon, S.A. Nonelectrolyte substitution for water in phosphatidylcholine bilayers. Biochim. Biophys. Acta 731 (1983) 97–108.

    Article  CAS  Google Scholar 

  20. McIntosh, T., Mc Daniel, R. and Simon, S.A. Induction of an interdigitated gel phase in fully hydrated phosphatidylcholine bilayers. Biochim. Biophys. Acta 731 (1983) 109–114.

    Article  CAS  Google Scholar 

  21. Auger, M., Jarrell, H.C., Smith, I.C.P, Siminovitch, D.J., Mantsch, H.H.. and Wong, P.T.T. Effects of the local anesthetic tetracaine on the structural and dynamic properties of lipids in model membranes: a high-pressure Fourier transform infrared study. Biochemistry 27 (1988) 6086–6093.

    Article  PubMed  CAS  Google Scholar 

  22. Simon, S.A. and McIntosh, T.J. Interdigitated hydrocarbon chain packing causes the biphasic transition behavior in lipid/alcohol suspensions. Biochim. Biophys. Acta Biomembr. 773 (1984) 169–172.

    Article  CAS  Google Scholar 

  23. Gdaniec, M. and Ibragimov, B. Gossypol, in: A. Mickiewicz, M. Nicol, D. David, T. Fumio, and R. Bishop (Eds) Compr. Supramol. Chem. 6 (1996) 117–145.

  24. Ionov M., Gordiyenko N., Olchowik E., Baram N., Zijaev K., Salakhutdinov B., Bryszewska M. and Zamaraeva M. The immobilization of gossypol derivative on N-polyvinylpyrrolidone increases its water solubility and modifies membrane-active properties. J. Med. Chem. 52 (2009) 4119–4125

    Article  PubMed  CAS  Google Scholar 

  25. Israelachvili, I., Marcelja, S. and Horn, R.C. Physical principles of membrane Organization. Quant. Rev. Biophys. 13 (1980) 121–200.

    Article  CAS  Google Scholar 

  26. Gutowicz, J. and Terlecki, G. The association of glycolytic enzymes with cellular and model membranes. Cell. Mol. Biol. Lett. 8 (2003) 667–680.

    PubMed  CAS  Google Scholar 

  27. Ismailov, A.I., Baram, N.I., Biktimirov, L., Ziyaev, H.L, Zamaraeva, M.V., Gagelgans, A.I., Gordienko, N.V. and Uysupova, S.M. Patent 2123. Rasmii Akhborotnoma 4 (2002) 17–24.

    Google Scholar 

  28. Biktimirov, L., Ziyaev, Kh., Khodzhaniyazov, B., Ziyamov, D., Baram, N. and Ismailov, A. Complex derivatives of gossypol with N-polyvinylpyrrolidone. Chem. Nat. Comp. 32 (1996) 177–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Ionov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ionov, M., Tukfatullina, I., Salakhutdinov, B. et al. The interaction of PVP complexes of gossypol and its derivatives with an artificial membrane lipid matrix. Cell Mol Biol Lett 15, 98–117 (2010). https://doi.org/10.2478/s11658-009-0037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-009-0037-x

Key words

  • Gossypol and its derivatives
  • Lipid membranes
  • Differential scanning calorimetry
  • Membrane fluidity