Skip to main content

The physiological and morphological phenotype of a yeast mutant resistant to the quaternary ammonium salt N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride

Abstract

We investigated the action of the quaternary ammonium salt (QAS) called IM (N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride) on Saccharomyces cerevisiae yeast cells. Changes in the yeast cell ultrastructure were confirmed by electron microscopy. We treated resistant mutant cells with QAS, and confirmed destruction of the mutant cytoplasm, an increase in the thickness of the cell wall, separation of the cell wall from the cytoplasm, and the accumulation of numerous lipid droplets. We also observed a relatively high production of lipids in the cells of the parental wild-type strain Σ1278b and in its IM-resistant (IMR) mutant in the presence of the QAS. The IMR mutant showed increased sensitivity to CaCl2 and SDS, and resistance to ethidium bromide, chloramphenicol, erythromycin and osmotic shock. It also tolerated growth at low pH. We suggest that the resistance to IM could be connected with the level of permeability of the cell membrane because the IMR mutant was sensitive to this compound in vivo in the presence of SDS and guanidine hydrochloride, which cause increased permeability of the cell plasma membrane.

Abbreviations

HBV:

human hepatitis B virus

IM:

(N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride)

QAS:

quaternary ammonium salt

References

  1. Xiao, Y., Chen, J., Fang, M., Xing, X., Wang, H., Wang, Y. and Li, F. Antibacterial effects of three experimental quaternary ammonium salt (QAS) monomers on bacteria associated with oral infections. J. Oral Sci. 50 (2008) 323–327.

    Article  CAS  PubMed  Google Scholar 

  2. Thorsteinsson, T., Masson, M., Kristinsson, K.G., Hjalmarsdottir, M.A., Hilmarsson, H. and Loftsson, T. Soft antimicrobial agents: Synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds. J. Med. 46 (2003) 4173–4181.

    CAS  Google Scholar 

  3. Massi, L., Guittard, F. and Geribaldi, S. Quaternary bisammonium fluorosurfactants for antimicrobial devices, Progr. Colloid Polymer Sci. 124 (2004) 190–193.

    Google Scholar 

  4. Mc Donnell, G. and Russell, A.D. Antiseptics and disinfectants activity, action and resistance. Clin. Microbiol. Rev. 12 (1999) 147–179.

    CAS  Google Scholar 

  5. Kourai, H., Yabuhara, T., Shirai, A., Maeda, T. and Nagamune, H. Syntheses anitimicrobial activities of a series of new bis-quaternaty ammonium compounds. Eur. J. Med. Chem. 41 (2006) 437–444.

    Article  CAS  PubMed  Google Scholar 

  6. Denyer, S.P. Mechanism of action of antibacterial biocides. Int. Biodeterior. Biodegrad. 36 (1995) 227–245.

    Article  CAS  Google Scholar 

  7. Ohkawa, K., Kim, H. and Lee, K. Biodegradation of electrospun poly (e-caprolactone) non-woven fabrics by pure-cultured soil filamentous fungi. J. Polym. Env. 12 (2004) 211–218.

    Article  CAS  Google Scholar 

  8. Lee, C. Structure, conformation and action of neuromuscular blocking drugs. Br. J. Anaesth. 8 (2001) 7755–7769.

    Google Scholar 

  9. Koyama, K. and Shimazu, Y. Benzalkonium chlorides. Drugs and Poisons in Humans 23 (2005) 407–413.

    Article  Google Scholar 

  10. Debbash, C., de Saint Jean, M., Pisella, P.J., Warnet, J. and Baudouin, C. Quaternary ammonium cytotoxity in a human conjunctinal cell line. J. Fr. Ophtalmol. 22 (1999) 950–958.

    Google Scholar 

  11. Petrocci, A.N. Surface-active agents: quaternary ammonium compounds. In: Disinfection, sterilization and preservation. (Block, S.S. Ed.) Lea and Febiger. Philadelpha. 1983, 309–329.

    Google Scholar 

  12. Hugo, W.B. and Frier, M. Mode of action of the antibacterial compound dequalinium acetate. Appl. Microbiol. 17 (1969) 118–127.

    CAS  PubMed  Google Scholar 

  13. Hugo, W.B. Disinfection mechanisms. In: Principles and practice of disinfection, preservation and sterilization, 3rd ed., (Russell, A.D., Hugo, W.B. & Ayliffe, G.A.J., Eds), Blackwell Science, Oxford. 1999, 258–283.

    Google Scholar 

  14. Cabral, J.P.S. Mode of antibacterial action of dodine (dodecylguanidine monoacetate) in Pseudomonas syringae. Can. J. Microbiol. 38 (1991) 115–123.

    Article  Google Scholar 

  15. Hiom, S.J., Furr, J.R., Russell, A.D. and Dickinson, J.R. Effects of chlorhexidine diacetate and cetylpyridinium chloride on whole cells and protoplasts of Saccharomyces cerevisiae. Microbios 74 (1993) 111–120.

    CAS  PubMed  Google Scholar 

  16. Russell, A.D. Bacterial spores and chemical sporicidal agents. Clin. Microbiol. Rev. 3 (1990) 99–119.

    CAS  PubMed  Google Scholar 

  17. Russell, A.D. Activity of biocides against mycobacteria. J. Appl. Bacteriol. Symp. Suppl. 81 (1996) 87S–101S.

    Google Scholar 

  18. Springthorpe, V.S., Grenier, J.L., Lloyd-Evans, N. and Sattar, S.A. Chemical disinfection of human rotaviruses: efficacy of commercially-available products in suspension tests. J. Hyg. 97 (1986) 139–161.

    Article  CAS  Google Scholar 

  19. Springthorpe, V.S. and Satter, S.A. Chemical disinfection of viruscontaminated surfaces. Crit. Rev. Environ. Control 20 (1990) 169–229.

    Article  Google Scholar 

  20. Prince, D.L., Prince, H.N., Thraenhart, O., Muchmore, E., Bonder, E. and Pugh, J. Methodological approaches to disinfection of human hepatitis B virus. J. Clin. Microbiol. 31 (1993) 3296–3304.

    CAS  PubMed  Google Scholar 

  21. Maillard, J.Y. Mechanisms of viricidal action, In: Principles and Practice of Disinfection, Preservation and Sterilization. (Russell, A.D., Hugo, W.B., Ayliffe, G.A.J. Eds.), Blackwell Science, Oxford, 1999, 207–221.

    Google Scholar 

  22. Maillard, J.Y., Beggs, T.S., Day, M.J., Hudson, R.A. and Russell, A.D. Damage to Pseudomonas aeruginosa PAO1 bacteriophage F116 DNA by biocides. J. Appl. Bacteriol. 80 (1996) 540–554.

    CAS  PubMed  Google Scholar 

  23. Mitchell, B.A., Paulsen, I.T., Brown, M.H. and Skurray, R.A. Bioenergetics of the staphylococcal multidrug export protein QacA: identification of distinct binding sites for monovalent and divalent cations. J. Biol. Chem. 274 (1999) 3541–3548.

    Article  CAS  PubMed  Google Scholar 

  24. Rogers, B., Decottignies, A., Kolaczkowski, M., Carvajal, E., Balzi, E. and Goffeau, A. The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J. Mol. Microbiol. Biotechnol. 3 (2001) 207–214.

    CAS  PubMed  Google Scholar 

  25. Kolaczkowski, M., Kolaczkowska, A., Łuczynski, J., Witek, S. and Goffeau, A. In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb. Drug Resist. 4 (1998) 143–158.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, Y.L. and Lo, H.J. Mechanisms of antifungal agent resistance. J. Microbiol. Immunol. Infect. 34 (2001) 79–86.

    CAS  PubMed  Google Scholar 

  27. Obłąk, E., Lachowicz, T.M., Łuczyński, J. and Witek, S. Comparative studies of biological activities of the lysosomotropic aminoesters and quaternary ammonium salts on yeast Saccharomyces cerevisiae. Cell. Mol. Biol. Lett. 6 (2001) 871–880.

    PubMed  Google Scholar 

  28. Obłąk, E., Lachowicz, T.M., Łuczyński, J. and Witek, S. Lysosomotropic N,N-dimethyl α-aminoacid n-alkylesters and their quaternary ammonium salts as plasma membrane and mitochondrial ATPases inhibitors. Cell. Mol. Biol. Lett. 7 (2002) 1121–1129.

    PubMed  Google Scholar 

  29. Lachowicz, T.M., Witkowska, R. and Obłąk, E. Amino acid auxotrophy increases sensitivity of Saccharomyces cerevisiae to a quaternary ammonium salt IM. Acta Microbiol. Polon. 39 (1990) 157–162.

    CAS  Google Scholar 

  30. Lachowicz, T.M., Obłąk, E. and Piątkowski, J. Auxotrophy stimulated sensitivity to quaternary ammonium salts and its relation to active transport in yeast. Bul. Pol. Acad. Sci. Biol. Sci. 40 (1992) 173–182.

    CAS  Google Scholar 

  31. Obłąk, E., Ułaszewski, S., Morawiecki, A., Witek, S., Witkowska, R., Majcher, K. and Lachowicz, T.M. Quaternary ammonium salt resistant mutants in yeast Saccharomyces cerevisiae. Yeast 5 Spec. Iss. (1989) 273–278.

  32. Obłąk, E., Ułaszewski, S. and Lachowicz, T.M. Mutants of Saccharomyces cerevisiae resistant to a quaternary ammonium salt. Acta Microbiol. Polon. 37 (1988) 261–269.

    Google Scholar 

  33. Obłąk, E., Adamski, R. and Lachowicz, T.M. pH-dependent influence of a quaternary ammonium salt and an aminoester on the yeast Saccharomyces cerevisiae ultrastructure. Cell. Mol. Biol. Lett. 8 (2003) 105–110.

    PubMed  Google Scholar 

  34. Obłąk, E., Bącal, J. and Lachowicz, T.M. A quaternary ammonium salt as an inhibitor of plasma membrane H+-ATPase in yeast Saccharomyces cerevisiae. Cell. Mol. Biol. Lett. 5 (2000) 315–324.

    Google Scholar 

  35. Obłąk, E., Lachowicz, T.M. and Witek, S. D, L-leucine transport in a Saccharomyces cerevisiae mutant resistant to quaternary ammonium salts. Folia Microbiol. 41 (1996) 116–119.

    Article  Google Scholar 

  36. Rucka, M., Oświęcimska, M. and Witek, S. New biocides for cooling water treatment. II. Quaternary ammonium salts derivatives of glycine esters. Envir. Protec. Eng. 9 (1983) 25–31.

    CAS  Google Scholar 

  37. Reynolds, E.W. The use of lead citrate at high pH as an electron — opaque stain electron microscopy. J. Cell. Biol. 17 (1963) 208–212.

    Article  CAS  PubMed  Google Scholar 

  38. Kates, M. Laboratory Techniques in Biochemistry and Molecular Biology. Elsevier, Amsterdam. Vol. 3, part 2, 1986, 106–107.

    Google Scholar 

  39. Paściak, M., Ekiel, I., Grzegorzewicz, A., Mordarska, H. and Gamian, A. Structure of the major glycolipid from Rothia dentocariosa. Biochim. Biophys. Acta 1594 (2002) 199–205.

    PubMed  Google Scholar 

  40. Panaretou, B. and Piper, P.W. Plasma membrane ATPase action affects several stress tolerances of Saccharomyces cerevisiae and Schizozaccharomyces pombe as well as the extent and duration of the heat shock response. J. Gen. Microbiol. 136 (1990) 1763–1770.

    CAS  Google Scholar 

  41. Ogur, M., Roshanmanesh, A. and Ogur, S. Tricarboxylic acid cycle mutants in Saccharomyces cerevisiae. Comparison of independently derived mutants. Science 147 (1965) 1590.

    Article  CAS  PubMed  Google Scholar 

  42. Machnicka, B., Grochowalska, R., Boniewska-Biernacka, E., Słomińska, L. and Lachowicz, T.M. Acid excreting mutants of yeast Saccharomyces cerevisiae. Biochim. Biophys. Res. Commun. 325 (2004) 1030–1036.

    Article  CAS  Google Scholar 

  43. Panaretou, B. and Piper, P.W. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton pumping ATPase levels in response to both heat-shock and the entry to stationary phase. Eur. J. Biochem. 206 (1992) 635–640.

    Article  CAS  PubMed  Google Scholar 

  44. Viegas, C.A., Sebastiao, P.B., Nunes, A.G. and Sacorreia, I. Activation of plasma membrane H+-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at supraoptimal temperatures. Appl. Environ. Microbiol. 61 (1995) 1904–1909.

    CAS  PubMed  Google Scholar 

  45. Coote, P.J., Jones, M.V., Seymour I.J., Rowe, D.L., Ferdinando, D.P., McArtur, A.J. and Cole, M.B. Activity of plasma membrane H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae. Microbiology 140 (1994) 1881–1890.

    Article  CAS  PubMed  Google Scholar 

  46. Shin, D.Y., Matsumoto, K., Iida, H., Uno, I. and Ishikawa, T. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMPdependent protein phosphorylation. Mol. Cell. Biol. 7 (1987) 244–250.

    CAS  PubMed  Google Scholar 

  47. Iida, H. and Yahara, Y. Durable synthesis of high molecular weight heat shock proteins in Go cells of yeast and other eukaryotes. J. Cell. Biol. 99 (1984) 199–207.

    Article  CAS  PubMed  Google Scholar 

  48. Russell, A.D. Mechanisms of bacterial resistance to biocides. Int. Biodeterior. Biodegrad. 36 (1995) 247–265.

    Article  CAS  Google Scholar 

  49. Nikaido, H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264 (1994) 382–388.

    Article  CAS  PubMed  Google Scholar 

  50. Ghannoum, M.A. and Rice, L.B. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12 (1999) 501–517.

    CAS  PubMed  Google Scholar 

  51. Guérin-Méchin, L., Leveau, J.Y. and Dubois-Brissonnet, F. Resistance of spheroplasts and whole cells of Pseudomonas aeruginosa to bactericidal activity of various biocides: evidence of the membrane implication. Microbiol. Res. 159 (2004) 51–57.

    Article  PubMed  CAS  Google Scholar 

  52. Gupta, A.K., Ahmad, I. and Summerbell, R.C. Fungicidal activities of commonly used disinfectants and antifungal pharmaceutical spray preparations against clinical strains of Aspergillus and Candida species. Med. Mycol. 40 (2002) 201–208.

    CAS  PubMed  Google Scholar 

  53. Shirai, A., Sumitomo, T., Kurimoto, M., Maseda, H. and Kourai, H. The mode of the antifungal activity of gemini-pyridinium salt against yeast. Biocontrol. Sci. 14 (2009) 13–20.

    Article  CAS  PubMed  Google Scholar 

  54. Walker, G.M. Yeast physiology and biotechnology. John Wiley & Sons Ltd. Chichester, England, 1998, 169–231.

    Google Scholar 

  55. Van der Rest, M.E., Kamminga, A.H., Nakano, A., Anraku, Y., Poolman, B., and Konings, W.N. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol. Rev. 59 (1995) 304–322.

    PubMed  Google Scholar 

  56. Baranowska, H., Polanowska, R. and Putrament, A. Spontaneous and induced non-specific drug resistance in Saccharomyces cerevisia. Acta Microb. Polon. 23 (1979) 181–201.

    Google Scholar 

  57. Dubnicková, M., Rezanka, T. and Koscová, H. Adaptive changes in fatty acids of E. coli strains exposed to a quaternary ammonium salt and an amine oxide. Folia Microbiol. 51 (2006) 371–374.

    Article  Google Scholar 

  58. Guérin-Méchin, L., Dubois-Brissonnet, F., Hedyd, B. and Leveau, J.Y. Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation with resistance to bactericidal activity. J. Appl. Microbiol. 87 (1999) 735–742.

    Article  PubMed  Google Scholar 

  59. Kolaczkowska, A., Kolaczkowski, M., Goffeau, A. and Moye-Rowley, W.S. Compensatory activation of the multidrug transporters Pdr5p, Sng2p, and Yor1p by Pdr1 in Saccharomyces cerevisiae. FEBS Lett. 582 (2008) 977–983.

    Article  CAS  PubMed  Google Scholar 

  60. Van den Hazel, H.B., Pichler, H., do Valle Matta, M.A., Leitner, E., Goffeau, A. and Daum, G. PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J. Biol. Chem. 274 (1999) 1934–1941.

    Article  PubMed  Google Scholar 

  61. Hallstrom, T.C., Lambert, L., Schorling, L., Balzi, E., Goffeau, A. and Moye-Rowley, W.S. Coordinate control of sphingo lipid biosynthesis and multidrug resistance in Saccharomyces cerevisiae. J. Biol. Chem. 276 (2001) 23674–23680.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Obłąk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Obłąk, E., Gamian, A., Adamski, R. et al. The physiological and morphological phenotype of a yeast mutant resistant to the quaternary ammonium salt N-(dodecyloxycarboxymethyl)-N,N,N-trimethyl ammonium chloride. Cell Mol Biol Lett 15, 215–233 (2010). https://doi.org/10.2478/s11658-010-0002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0002-8

Key words

  • Quaternary ammonium salts
  • Drug resistance
  • Saccharomyces cerevisiae