Skip to main content
  • Short Communication
  • Published:

Homologous liver parenchymal cell-cell adhesion mediated by an endogenous lectin and its receptor

Abstract

Many studies have implicated cell-surface lectins in heterologous cell-cell adhesion, but little is known about the participation of lectins in cellular adhesion in homologous cells. Here, we show the development of a cell model for investigating the direct role of a cell-surface lectin in homologous cell-cell adhesion. Parenchymal cells were isolated from caprine liver using a perfusion buffer, and dispersed in a chemically defined modified Ringer’s solution. These cells undergo autoagglutination in the presence of Ca2+. The autoagglutinated cells can be dissociated specifically with D-galactose (50 mM), which also inhibits the liver cell autoagglutination event. The blood serum protein fetuin has no effect on liver cell autoagglutination, whereas desialylated fetuin (100 μM), with its terminal D-galactose residue, showed a high affinity for blocking the autoagglutination event. The data demonstrates the occurrence of a Ca2+-dependent D-galactose-specific lectin and a lectin receptor on the parenchymal cells. Furthermore, it shows that the observed autoagglutination event is caused by the interaction of the cell-surface lectin with its receptor on the neighbouring homologous cells. The data supports the view that homologous cell-cell contact in mammalian tissues is triggered by such lectin-receptor interaction and that the previously reported cell-surface adhesive proteins serve as a secondary force to strengthen cell adhesion. This cell model could be extremely useful for investigating the direct role of cell-surface lectin and its receptor in homologous cell adhesion in a variety of tissues under normal and pathological conditions.

Abbreviations

CAMs:

cell adhesion molecules

References

  1. Marshall, B.T., Long, M., Piper, J.W., Yago, T., McEver, R.P. and Zhu, C. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423 (2003) 190–193.

    Article  CAS  PubMed  Google Scholar 

  2. Pokutta, S. and Weis, W.I. Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu. Rev. Cell. Dev. Biol. 23 (2007) 237–261.

    Article  CAS  PubMed  Google Scholar 

  3. Schmidmaier, R. and Baumann, P. Anti-adhesion evolves to a promising therapeutic concept in oncology. Curr. Med. Chem. 15 (2008) 978–990.

    Article  CAS  PubMed  Google Scholar 

  4. Ogita, H. and Takai, Y. Cross-talk among integrin, cadherin, and growth factor receptor: roles of nectin and nectin-like molecule. Int. Rev. Cytol. 265 (2008) 1–54.

    Article  CAS  PubMed  Google Scholar 

  5. Hoffman, S., Sorkin, B.C., White, P.C., Brackenbury, R., Mailhammer, R., Rutishauser, U., Cunningham, B.A. and Edelman, G.M. Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J. Biol. Chem. 257 (1982) 7720–7729.

    CAS  PubMed  Google Scholar 

  6. Gennarini, G., Hirn, M., Deagostini-Bazin, H. and Goridis, C. Studies on the transmembrane disposition of the neural cell adhesion molecule N-CAM. A monoclonal antibody recognizing a cytoplasmic domain and evidence for the presence of phosphoserine residues. Eur. J. Biochem. 142 (1984) 65–73.

    Article  CAS  PubMed  Google Scholar 

  7. Edelman, G.M. Surface modulation in cell recognition and cell growth. Science 192 (1976) 218–226.

    Article  CAS  PubMed  Google Scholar 

  8. Crocker, P.R. and Varki, A. Siglecs in the immune system. Immunology 103 (2001) 137–145.

    Article  CAS  PubMed  Google Scholar 

  9. Weis, W.I. and Drickamer, K. Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem. 65 (1996) 441–473.

    Article  CAS  PubMed  Google Scholar 

  10. Nakahara, S. and Raz, A. Biological modulation by lectins and their ligands in tumor progression and metastasis. Anticancer Agents Med. Chem. 8 (2008) 22–36.

    Article  CAS  PubMed  Google Scholar 

  11. Yuan, K., Kucik, D., Singh, R.K., Listinsky, C.M., Listinsky, J.J. and Siegal, G.P. Alterations in human breast cancer adhesion-motility in response to changes in cell surface glycoproteins displaying alpha-L-fucose moieties. Int. J. Oncol. 32 (2008) 797–807.

    CAS  PubMed  Google Scholar 

  12. Imai, Y., Lasky, L.A. and Rosen, S.D. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature 361 (1993) 555–557.

    Article  CAS  PubMed  Google Scholar 

  13. Mannori G., Santoro, D., Carter, L., Corless, C., Nelson, R.N. and Bevilacqua, M.P. Inhibition of colon carcinoma cell lung colony formation by a soluble form of selectin. Am. J. Pathol. 151 (1997) 233–243.

    CAS  PubMed  Google Scholar 

  14. Kobayashi, K., Matsumoto, S., Morishima, T., Kawabe, T. and Okamoto, T. Cimetidine inhibits cancer cell adhesion to endothelial cells and prevents metastasis by blocking E-selectin expression. Cancer Res. 60 (2000) 3978–3984.

    CAS  PubMed  Google Scholar 

  15. Kolb, H. and Kolb-Bachofen, V. A lectin-like receptor on mammalian macrophages. Biochem. Biophys. Res. Commun. 85 (1978) 678–683.

    Article  CAS  PubMed  Google Scholar 

  16. Kolb, H., Schudt, C., Kolb-Bachofen, V. and Kolb, H.A. Cellular recognition by rat liver cells of neuraminidase-treated erythrocytes. Demonstration and analysis of cell contacts. Exp. Cell. Res. 113 (1978) 319–325.

    Article  CAS  PubMed  Google Scholar 

  17. Kolb, H., Kriese, A., Kolb-Bachofen, V. and Kolb, H.A. Possible mechanism of entrapment of neuraminidase-treated lymphocytes in the liver. Cell Immunol. 40 (1978) 457–462.

    Article  CAS  PubMed  Google Scholar 

  18. Kolb, H., Schlepper-Schafer, J. and Kolb-Bachofen, V. Cell contacts mediated by D- galactose specific lectins on liver cells. Biol. Cell. 36 (1979) 301–308.

    CAS  Google Scholar 

  19. Schlepper-Schafer, J., Friedrich, E. and Kolb, H. Galactosyl-specific receptor on liver cells: binding sites for tumour cells. Europ. J. Cell. Biol. 25 (1981) 95–102.

    CAS  PubMed  Google Scholar 

  20. Spiro, R.G. Studies on fetuin, a glycoprotein of fetal serum. I. Isolation, chemical composition, and physiochemical properties. J. Biol. Chem. 235 (1960) 2860–2869.

    CAS  PubMed  Google Scholar 

  21. Seglen, P.O. Preparation of isolated rat liver cells. Methods Cell Biol. 13 (1976) 29–83.

    Article  CAS  PubMed  Google Scholar 

  22. Ali, N. and Salahuddin, A. Isolation and some properties of mammalian hepatic membrane lectins. FEBS Lett. 246 (1989) 163–165.

    Article  CAS  PubMed  Google Scholar 

  23. Ashwell, G. and Harford, J. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 51 (1982) 531–554.

    Article  CAS  PubMed  Google Scholar 

  24. Schwartz, A.L. The hepatic asialoglycoprotein receptor. CRC Crit. Rev. Biochem. 16 (1995) 207–233.

    Article  Google Scholar 

  25. Groeber, B.K., Williams, L.G., Pigott, J., Ziska, P.D.S., Franz, H. and Debbage, P.L. Affinities of Ricin 120 and Mistletos lectin 1 for membrane components of liver and nervous tissues. In Lectins: Biology, Biochemistry, Clinical Biochemistry, Vol. III (Bog-Hansen, T.C. and Spengler, G.A. Eds), Walter de Gruyter & Co., Berlin and New York, 1982, 179–187.

    Google Scholar 

  26. Banerjee, S., Dungdung, S.R., Das, K. and Majumder, G.C. Synchronous modulation of cell-surface lectin and its receptor in a homologous cell population: a novel mechanism of cellular regulation. Exp. Cell. Res. 312 (2006) 2299–2308.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Chandra Majumder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Majumder, G.C. Homologous liver parenchymal cell-cell adhesion mediated by an endogenous lectin and its receptor. Cell Mol Biol Lett 15, 356–364 (2010). https://doi.org/10.2478/s11658-010-0011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0011-7

Key words