Skip to main content


You are viewing the new article page. Let us know what you think. Return to old version

The effect of the lipid-binding site of the ankyrin-binding domain of erythroid β-spectrin on the properties of natural membranes and skeletal structures


It was previously shown that the beta-spectrin ankyrin-binding domain binds lipid domains rich in PE in an ankyrin-dependent manner, and that its N-terminal sequence is crucial in interactions with phospholipids. In this study, the effect of the full-length ankyrin-binding domain of β-spectrin on natural erythrocyte and HeLa cell membranes was tested. It was found that, when encapsulated in resealed erythrocyte ghosts, the protein representing the full-length ankyrin-binding domain strongly affected the shape and barrier properties of the erythrocyte membrane, and induced partial spectrin release from the membrane, while truncated mutants had no effect. As found previously (Bok et al. Cell Biol. Int. 31 (2007) 1482–94), overexpression of the full-length GFP-tagged ankyrin-binding domain aggregated and induced aggregation of endogenous spectrin, but this was not the case with overexpression of proteins truncated at their N-terminus. Here, we show that the aggregation of spectrin was accompanied by the aggregation of integral membrane proteins that are known to be connected to spectrin via ankyrin, i.e. Na+K+ATP-ase, IP3 receptor protein and L1 CAM. By contrast, the morphology of the actin cytoskeleton remained unchanged and aggregation of cadherin E or N did not occur upon the overexpression of either full-length or truncated ankyrin-binding domain proteins. The obtained results indicate a substantial role of the lipid-binding part of the β-spectrin ankyrin-binding domain in the determination of the membrane and spectrin-based skeleton functional properties.



1,1’dioctadecyl 3,3,3’3’tetramethylindocarbocyanine






SDS polyacrylamide gel electrophoresis


  1. 1.

    Marchesi, V.T. and Steers, Jr E. Selective solubilization of a protein component of the red cell membrane. Science 159 (1968) 203–204.

  2. 2.

    Goodman, S.R., Zagon, I.S. and Kulikowski, R.R. Identification of a spectrin-like protein in nonerythroid cells. Proc. Natl Acad. Sci. USA 78 (1981) 7570–7574.

  3. 3.

    De Matteis, M.A. and Morrow, J.S. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113 (2000) 2331–2343.

  4. 4.

    Bialkowska, K., Saido, T.C. and Fox, J.E.B. SH3 domain of spectrin participates in the activation of Rac in specialized calpain-induced integrin signaling complexes. J. Cell Sci. 118 (2005) 381–395.

  5. 5.

    Nedrelow, J.H., Cianci, C.D. and Morrow, J.S. c-Src binds αII Spectrin’s Src Homology 3 (SH3) domain and blocks calpain susceptibility by phosphorylating Tyr1176*. J. Biol. Chem. 278 (2003) 7735–7741.

  6. 6.

    Bennett, V. and Baines, A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81 (2001) 1353–1392.

  7. 7.

    Li, J., Lykotrafitis, G., Dao, M. and Suresh, S. Cytoskeletal dynamics of human erythrocyte. Proc. Natl Acad. Sci. USA 104 (2007) 4937–42.

  8. 8.

    Mohandas, N. and Evans, E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23 (1994) 787–818.

  9. 9.

    Gov, N. and Safran, S.A. Pinning of fluid membranes by periodic harmonic potentials. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69 (2004) 011101.

  10. 10.

    Bennett, V. and Branton, D. Selective association of spectrin with the cytoplasmic surface of Human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin. J. Biol. Chem. 252 (1977) 2753–2763.

  11. 11.

    Bennett, V. and Stenbuck, P.J. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature 280 (1979) 468–473.

  12. 12.

    Yu, J. and Goodman, S.R. Syndeins: the spectrin-binding protein(s) of the human erythrocyte membrane. Proc. Natl Acad. Sci. USA 76 (1979) 2340–2344.

  13. 13.

    Hemming, N.J., Anstee, D.J., Staricoff, M.A., Tanner, M.J.A. and Mohandas, N. Identification of the membrane attachment sites for protein 4.1 in the human erythrocyte. J. Biol. Chem. 270 (1995) 5360–5366.

  14. 14.

    Mouro-Chanteloup, I., Delaunay, J., Gane, P., Nicolas, V., Johansen, M., Brown, E.J., Peters, L.L., Le Van Kim, C., Cartron, J.P. and Colin, Y. Evidence that the red cell skeleton protein 4.2 interacts with the Rh membrane complex member CD47. Blood 101 (2003) 338–344.

  15. 15.

    Nicolas, V., Le Van Kim, C., Gane, P., Birkenmeier, C., Cartron, J.P., Colin, Y. and Mouro-Chanteloup, I. Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J. Biol. Chem. 278 (2003) 25526–25533.

  16. 16.

    Salomao, M., Zhang, X., Yang, Y., Lee, S., Hartwig, J.H., Chasis, J.A., Mohandas, N. and An, X. Proc. Natl Acad. Sci USA 105 (2008) 8029–8031. doi10.1073pnas.0803225105.

  17. 17.

    Anong, W.A., Franco, T., Chu, H., Weis, T.L., Devlin, E.E., Bodine, D.M., An, X. Mohandas, N. and Low, P.S. Adducin forms a bridge between the erythrocyte membrane and its cytoskeleton and regulates membrane cohesion. Blood 114 (2009) 1904–1912.doi 10.1182/blood-2009-02-203216.DOI 10.1182/blood-2009-02-203216.

  18. 18.

    Delaunay, J. The molecular basis of hereditary red cell membrane disorders. Blood Rev. 21 (2007) 1–20.

  19. 19.

    An, X., Guo, X., Sum, H., Morrow, J., Gratzer, W. and Mohandas, N. Phosphatidylserine binding sites in erythroid spectrin: Location and implications for membrane stability. Biochemistry 43 (2004) 310–315.

  20. 20.

    Grzybek, M., Chorzalska, A., Bok, E., Hryniewicz-Jankowska, A., Czogalla, A., Diakowski, W. and Sikorski, A.F. Spectrin-phospholipid interactions. Existence of multiple kinds of binding sites? Chem. Phys. Lipids 141 (2006) 133–141.

  21. 21.

    Bia.kowska, K., Zembro., A. and Sikorski, A.F. Ankyrin inhibits binding of erythrocyte spectrin to phospholipid vesicles. Biochim. Biophys. Acta 1191 (1994) 21–26.

  22. 22.

    Ray, S. and Chakrabarti, A. Membrane interaction of erythroid spectrin: surface-density dependent high-affinity binding to phosphatidylethanolamine. Mol. Membr. Biol. 21 (2004) 93–100.

  23. 23.

    Hryniewicz-Jankowska, A., Bok, E., Dubielecka, P., Chorzalska, A., Diakowski, W., Jezierski, A., Lisowski, M. and Sikorski, A.F. Mapping of an ankyrin-sensitive, phosphatidylethanol-amine/phosphatidylcholine monoand bi-layer binding site in erythroid β-spectrin. Biochem. J. 382 (2004) 677–685.

  24. 24.

    Bok, E., Plażuk, E., Hryniewicz-Jankowska, A., Chorzalska, A., Szmaj, A., Dubielecka, P.M., Stebelska, K., Diakowski, W., Lisowski, M., Langner, M. and Sikorski, A.F. Lipid-binding role of betaII-spectrin ankyrin-binding domain. Cell. Biol. Int. 31 (2007) 1482–1494.

  25. 25.

    Kennedy, S.P., Warren, S.L., Forget, B.G. and Morrow, J.S. Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin. J. Cell. Biol. 115 (1991) 267–277.

  26. 26.

    Bodemann, H. and Passow, H. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J. Membr. Biol. 8 (1972) 1–26.

  27. 27.

    Steck, T.L. and Kant, J.A. Preparation of impermeable ghosts and inside-out vesicles from Human erythrocyte membranes. Methods Enzymol. 31 (1974) 172–180.

  28. 28.

    Pażdzior, G., Langner, M., Chmura, A., Bogusławska, D., Heger, E., Chorzalska, A. and Sikorski, A.F. The kinetics of haemolysis of spherocytic erythrocytes. Cell. Mol. Biol. Lett. 8 (2003) 639–648.

  29. 29.

    Manno, S., Takakuwa, Y. and Mohandas, N. Identification of a functional role for lipid asymmetry in biological membranes: Phosphatidylserine-skeletal protein interactions modulate membrane stability. Proc. Natl. Acad. Sci. USA 99 (2002) 1943–1948.

  30. 30.

    Hu, R.J., Moorthy, S. and Bennett, V. Expression of functional domains of betaG spectrin disrupts epithelial morphology in cultured cells. J. Cell Biol. 128 (1995) 1069–1080.

  31. 31.

    Sikorski, A.F. and Białkowska, K. Interactions of Spectrins with Membrane Intrinsic Domain. Cell. Mol. Biol. Lett. 1 (1996) 97–104.

  32. 32.

    Ipsaro, J.J., Huang, L. and Mondragon, A. Structures of the spectrin-ankyrin interaction binding domains. Blood 113 (2009) 5385–5393.

  33. 33.

    Czogalla, A., Jaszewski, A.R., Diakowski, W., Bok, E., Jezierski, A. and Sikorski, A.F. Structural insight into an ankyrin-sensitive lipid-binding site of erythroid beta-spectrin. Mol. Membr. Biol. 24 (2007) 215–224.

  34. 34.

    Czogalla, A., Grzymajło, K, Jezierski, A. and Sikorski, A.F. Phospholipid-induced structural changes to an erythroid beta spectrin ankyrin-dependent lipid-binding site. Biochim. Biophys. Acta 1778 (2008) 2612–2620.

  35. 35.

    Stabach, P.R., Simonovic, I., Ranieri, M.A., Abodi, M.S., Steitz, T.A., Simonovic, M. and Morrow, J.S. The structure of the ankyrin-binding site of b-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood 113 (2009) 5377–5384.

Download references

Author information

Correspondence to Aleksander F. Sikorski.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Spectrin-lipid interactions
  • Ankyrin-binding domain
  • Resealed ghosts
  • Membrane skeleton properties
  • Transmembrane protein aggregation