Skip to main content
  • Research Article
  • Published:

The heterogeneity of cell subtypes from a primary culture of human amniotic fluid

Abstract

Heterogeneous human amniotic fluid contains various cell types. Herein, we report on the possibility of simultaneously isolating three subtypes of cells from one primary culture. Using a stainless steel instrument named a colony poculum, two of the three cell subtypes could be efficiently cultured, and these were further characterized. The results indicated that these two cell subtypes had different morphologies and were characterized by different cell marker expression profiles, including the differential expression of CD105, CD117 and EBAF. Furthermore, their gene expression array data revealed their different gene expression profiles. Although both cell types expressed several embryonic stem cell-specific markers, they were non-tumorigenic in vivo. This paper not only provides new insight into the heterogeneity of human amniotic fluid, it also presents a simple yet efficient cell isolation method. These results will contribute to the thorough investigation of the properties and potential future applications of human amniotic fluid-derived cells.

Abbreviations

AF-type:

amniotic fluid-specific

DAPI:

dipeptidyl aminopeptidase

EC cells:

embryonal carcinoma cells

EG cells:

embryonic germ cells

ES cells:

embryonic stem cells

E-type:

epitheloid type

FITC:

fluorescein isothiocyanate

F-type:

fibroblastic type

GO:

gene ontology

hAFC:

human amniotic fluid-derived cells

PBS:

phosphate-buffered saline

PE:

phycoerythrin

RT:

room temperature

RT-PCR:

reverse transcriptase polymerase chain reaction

References

  1. Huisjes, H.J. Origin of the cells in the liquor amnii. Am. J. Obstet. Gynecol. 106 (1970) 1222–1228.

    CAS  PubMed  Google Scholar 

  2. Prusa, A.R., Marton, E., Rosner, M., Bernaschek, G. and Hengstschläger, M. Oct-4 expressing cells in human amniotic fluid: a new source for stem cell research. Hum. Reprod. 18 (2003) 1489–1493.

    Article  PubMed  Google Scholar 

  3. In’ t Anker, P.S., Scherjon, S.A., Kleijburg-van der, Keur C., Noort, W.A., Claas, F.H., Willemze, R., Fibbe, W.E. and Kanhai, H.H. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102 (2003) 1548–1549.

    Article  Google Scholar 

  4. Tsai, M.S., Lee, J.L., Chang, Y.J. and Hwang, S.M. Isolation of human multipotent mesenchymal stem cells from second trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. 19 (2004) 1450–1456.

    Article  PubMed  Google Scholar 

  5. Tsai, M.S., Hwang, S.M., Tsai, Y.L., Cheng, F.C., Lee, J.L. and Chang, Y.J. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol. Reprod. 74 (2006) 545–551.

    Article  CAS  PubMed  Google Scholar 

  6. DeCoppi, P., Bartsch, G. Jr., Siddiqui, M.M., Xu, T., Santos, C.C., Perin L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., Furth, M.E., Soker, S. and Atala, A. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25 (2007) 100–106.

    Article  CAS  Google Scholar 

  7. Kim, J., Lee, Y., Kim, H., Hwang, K.J., Kwon, H.C., Kim, S.K., Cho, D.J., Kang, S.G. and You, J. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif. 40 (2007) 75–90.

    Article  CAS  PubMed  Google Scholar 

  8. Pesce, M., Anastassiadis, K. and Scholer, H.R. Oct-4: lessons of totipotency from embryonic stem cells. Cells Tissues Organs 165 (1999) 144–152.

    Article  CAS  PubMed  Google Scholar 

  9. Holden, C. Versatile stem cells without the ethical baggage. Science 315 (2007) 170.

    Article  CAS  PubMed  Google Scholar 

  10. Prusa, A.R. and Hengstschläger, M. Amniotic fluid cells and human stem cell research: a new connection. Med. Sci. Monit. 8 (2002) 253–257.

    Google Scholar 

  11. Siegel, N., Rosner, M., Hanneder, M., Freilinger, A. and Hengstschläger, M. Human amniotic fluid stem cells: a new perspective. Amino Acids 35 (2008) 291–293.

    Article  CAS  PubMed  Google Scholar 

  12. Chiavegato, A., Bollini, S., Pozzobon, M., Callegari, A., Gasparotto, L., Taiani, J., Piccoli, M., Lenzini, E., Gerosa, G., Vendramin, I., Cozzi, E., Angelini, A., Iop, L., Zanon, G.F., Atala, A., DeCoppi, P. and Sartore, S. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immunodeficient rat. J. Mol. Cell. Cardiol. 42 (2007) 746–759.

    Article  CAS  PubMed  Google Scholar 

  13. Bossolasco, P., Montemurro, T., Cova, L., Zangrossi, S., Calzarossa, C., Buiatiotis, S., Soligo, D., Bosari, S., Silani, V., Deliliers, G.L., Rebulla, P. and Lazzari, L. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell. Res. 16 (2006) 329–336.

    Article  CAS  PubMed  Google Scholar 

  14. Kosaki, K., Bassi, M.T., Kosaki, R., Lewin, M., Belmont, J., Schauer, G. and Casey, B. Characterization and mutation analysis of human LEFTY A and LEFTY B: Homologues of murine genes implicated in left-right axis development. Am. J. Hum. Genet. 64 (1999) 712–721.

    Article  CAS  PubMed  Google Scholar 

  15. Besser, D. Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. J. Biol. Chem. 279 (2004) 45076–45084.

    Article  CAS  PubMed  Google Scholar 

  16. Dvash, T., Sharon, N., Yanuka, O. and Benvenisty, N. Molecular analysis of LEFTY-expressing cells in early human embryoid bodies. Stem Cells 25 (2007) 465–472.

    Article  CAS  PubMed  Google Scholar 

  17. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. and Jones, J.M. Embryonic stem cell lines derived from human blastocysis. Science 282 (1998) 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi, K. and Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (2006) 663–676.

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 (2007) 861–872.

    Article  CAS  PubMed  Google Scholar 

  20. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I. and Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science 318 (2007) 1917–1920.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junmei Zhou or Fang Chen.

Electronic supplementary material

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Geng, H., Xie, H. et al. The heterogeneity of cell subtypes from a primary culture of human amniotic fluid. Cell Mol Biol Lett 15, 424–439 (2010). https://doi.org/10.2478/s11658-010-0017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0017-1

Key words