Skip to main content

Advertisement

You are viewing the new article page. Let us know what you think. Return to old version

Switching p53-dependent growth arrest to apoptosis via the inhibition of DNA damage-activated kinases

Abstract

Cisplatin and doxorubicin are widely used anticancer drugs that cause DNA damage, which activates the ATM-Chk2-p53 pathway in cancer cells. This activation leads to cell cycle block or apoptosis, depending on the nature of the DNA damage. In an attempt to enhance the effects of these agents, we inhibited ATM/ATR and Chk2, which are known upstream regulators of p53. The cancer cell lines A2780 and ARN8, bearing the wild-type p53 protein, were used to study changes in p53 activation and trans-activation. Our results suggest that the G1-checkpoint, normally activated by DNA damage, is functionally overcome by the action of kinase inhibitors that sensitize cells to apoptosis. Both inhibitors show these effects, albeit with variable intensity in different cell lines, which is promising for other studies and theoretically for use in clinical practice.

Abbreviations

cisPt:

cisplatin

dox:

doxorubicin

DSB:

double-strand break

inh 1:

CGK733 inhibitor ATM/ATR

inh 2:

Chk2 inhibitor II

qRT-PCR:

quantitative real-time polymerase chain reaction

References

  1. 1.

    Ko, L.J. and Prives, C. p53: puzzle and paradigm. Genes Dev. 10 (1996) 1054–1072.

  2. 2.

    Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88 (1997) 323–331.

  3. 3.

    Barak, Y., Juven, T., Haffner, R. and Oren, M. mdm2 expression is induced by wild type p53 activity. EMBO J. 12 (1993) 461–468.

  4. 4.

    Wu, X., Bayle, J.H., Olson, D. and Levine, A.J. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7 (1993) 1126–1132.

  5. 5.

    Lane, D.P. Cancer. p53, guardian of the genome. Nature 358 (1992) 15–16.

  6. 6.

    Saito, S., Goodarzi, A.A., Higashimoto, Y., Noda, Y., Lees-Miller, S.P., Appella, E. and Anderson, C.W. ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J. Biol. Chem. 277 (2002) 12491–12494.

  7. 7.

    Siliciano, J.D., Canman, C.E., Taya, Y., Sakaguchi, K., Appella, E. and Kastan, M.B. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11 (1997) 3471–3481.

  8. 8.

    Bartek, J. and Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 3 (2003) 421–429.

  9. 9.

    Fedier, A., Schlamminger, M., Schwarz, V.A., Haller, U., Howell, S.B. and Fink, D. Loss of atm sensitises p53-deficient cells to topoisomerase poisons and antimetabolites. Ann. Oncol. 14 (2003) 938–945.

  10. 10.

    Shiloh, Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci. 31 (2006) 402–410.

  11. 11.

    Canman, C.E., Wolff, A.C., Chen, C.Y., Fornace, A.J., Jr. and Kastan, M.B. The p53-dependent G1 cell cycle checkpoint pathway and ataxiatelangiectasia. Cancer Res. 54 (1994) 5054–5058.

  12. 12.

    Canman, C.E., Lim, D.S., Cimprich, K.A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M.B. and Siliciano, J.D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281 (1998) 1677–1679.

  13. 13.

    Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C.W., Chessa, L., Smorodinsky, N.I., Prives, C., Reiss, Y., Shiloh, Y. and Ziv, Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281 (1998) 1674–1677.

  14. 14.

    Hirao, A., Kong, Y.Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., Liu, D., Elledge, S.J. and Mak, T.W. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287 (2000) 1824–1827.

  15. 15.

    Lin, W.C., Lin, F.T. and Nevins, J.R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15 (2001) 1833–1844.

  16. 16.

    Muller, P., Ceskova, P. and Vojtesek, B. Hsp90 is essential for restoring cellular functions of temperature-sensitive p53 mutant protein but not for stabilization and activation of wild-type p53: implications for cancer therapy. J. Biol. Chem. 280 (2005) 6682–6691.

  17. 17.

    Vojtesek, B., Bartek, J., Midgley, C.A. and Lane, D.P. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods 151 (1992) 237–244.

  18. 18.

    Blaydes, J.P. and Hupp, T.R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene 17 (1998) 1045–1052.

  19. 19.

    Chen, J., Marechal, V. and Levine, A.J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell Biol. 13 (1993) 4107–4114.

  20. 20.

    Sheard, M.A., Krammer, P.H. and Zaloudik, J. Fractionated gamma-irradiation renders tumour cells more responsive to apoptotic signals through CD95. Br. J. Cancer 80 (1999) 1689–1696.

  21. 21.

    Sheard, M.A., Vojtesek, B., Janakova, L., Kovarik, J. and Zaloudik, J. Upregulation of Fas (CD95) in human p53wild-type cancer cells treated with ionizing radiation. Int. J. Cancer 73 (1997) 757–762.

  22. 22.

    Wang, D. and Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4 (2005) 307–320.

  23. 23.

    Siddik, Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22 (2003) 7265–7279.

  24. 24.

    Kurz, E.U., Douglas, P. and Lees-Miller, S.P. Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J. Biol. Chem. 279 (2004) 53272–53281.

  25. 25.

    McHugh, P.J., Spanswick, V.J. and Hartley, J.A. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2 (2001) 483–490.

  26. 26.

    Kartalou, M. and Essigmann, J.M. Recognition of cisplatin adducts by cellular proteins. Mutat. Res. 478 (2001) 1–21.

  27. 27.

    Chaney, S.G., Campbell, S.L., Bassett, E. and Wu, Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev. Oncol. Hematol. 53 (2005) 3–11.

  28. 28.

    Dronkert, M.L. and Kanaar, R. Repair of DNA interstrand cross-links. Mutat. Res. 486 (2001) 217–247.

  29. 29.

    Damia, G., Filiberti, L., Vikhanskaya, F., Carrassa, L., Taya, Y., D’Incalci, M. and Broggini, M. Cisplatinum and taxol induce different patterns of p53 phosphorylation. Neoplasia 3 (2001) 10–16.

  30. 30.

    Khanna, K.K., Keating, K.E., Kozlov, S., Scott, S., Gatei, M., Hobson, K., Taya, Y., Gabrielli, B., Chan, D., Lees-Miller, S.P. and Lavin, M.F. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat. Genet. 20 (1998) 398–400.

  31. 31.

    Lakin, N.D., Hann, B.C. and Jackson, S.P. The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 18 (1999) 3989–3995.

  32. 32.

    Tibbetts, R.S., Brumbaugh, K.M., Williams, J.M., Sarkaria, J.N., Cliby, W.A., Shieh, S.Y., Taya, Y., Prives, C. and Abraham, R.T. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13 (1999) 152–157.

  33. 33.

    Chehab, N.H., Malikzay, A., Appel, M. and Halazonetis, T.D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14 (2000) 278–288.

  34. 34.

    Chehab, N.H., Malikzay, A., Stavridi, E.S. and Halazonetis, T.D. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 13777–13782.

  35. 35.

    Shieh, S.Y., Ikeda, M., Taya, Y. and Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91 (1997) 325–334.

  36. 36.

    Delia, D., Fontanella, E., Ferrario, C., Chessa, L. and Mizutani, S. DNA damage-induced cell-cycle phase regulation of p53 and p21waf1 in normal and ATM-defective cells. Oncogene 22 (2003) 7866–7869.

  37. 37.

    Hill, R., Bodzak, E., Blough, M.D. and Lee, P.W. p53 Binding to the p21 promoter is dependent on the nature of DNA damage. Cell Cycle 7 (2008) 2535–2543.

  38. 38.

    Noda, A., Ning, Y., Venable, S.F., Pereira-Smith, O.M. and Smith, J.R. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 211 (1994) 90–98.

  39. 39.

    Lu, Y., Tatsuka, M., Takebe, H. and Yagi, T. Involvement of cyclin-dependent kinases in doxorubicin-induced apoptosis in human tumor cells. Mol. Carcinog. 29 (2000) 1–7.

  40. 40.

    Lu, Y., Yamagishi, N., Yagi, T. and Takebe, H. Mutated p21(WAF1/CIP1/SDI1) lacking CDK-inhibitory activity fails to prevent apoptosis in human colorectal carcinoma cells. Oncogene 16 (1998) 705–712.

  41. 41.

    Luo, Y., Hurwitz, J. and Massague, J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 375 (1995) 159–161.

  42. 42.

    Tang, J.J., Shen, C. and Lu, Y.J. Requirement for pre-existing of p21 to prevent doxorubicin-induced apoptosis through inhibition of caspase-3 activation. Mol. Cell Biochem. 291 (2006) 139–144.

  43. 43.

    Crescenzi, E., Palumbo, G., de Boer, J. and Brady, H.J. Ataxia telangiectasia mutated and p21CIP1 modulate cell survival of drug-induced senescent tumor cells: implications for chemotherapy. Clin. Cancer Res. 14 (2008) 1877–1887.

Download references

Author information

Correspondence to Roman Hrstka.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Protein p53
  • ATM/ATR kinases
  • Chk2
  • Inhibitors of DNA damage-activated kinases
  • Doxorubicin
  • Cisplatin