Skip to main content

The selection of aptamers specific for membrane molecular targets

Abstract

A growing number of RNA aptamers have been selected experimentally using the SELEX combinatorial approach, and these aptamers have several advantages over monoclonal protein antibodies or peptides with respect to their applications in medicine and nanobiotechnology. Relatively few successful selections have been reported for membrane molecular targets, in contrast to the situation with non-membrane molecular targets. This review compares the procedures and techniques used in selections against membrane proteins and membrane lipids. In the case of membrane proteins, the selections were performed against soluble protein fragments, detergent-membrane protein mixed micelles, whole cells, vesicles derived from cellular membranes, and enveloped viruses. Liposomes were used as an experimental system for the selection of aptamers against membrane lipids. RNA structure-dependent aptamer binding for rafts in lipid vesicles was reported. Based on the selected aptamers against DOPC and the amino acid tryptophan, a specific passive membrane transporter composed of RNA was constructed. The determination of the selectivity of aptamers appears to be a crucial step in a selection, but has rarely been fully investigated. The selections, which use whole cells or vesicles derived from membranes, can yield aptamers not only against proteins but also against membrane lipids.

Abbreviations

AChR:

acetylcholine receptor

CHO cells:

Chinese hamster ovary cells

CT:

cytoplasmic tail

DOPC:

dioleoylphosphatidylcholine

DOPS:

dioleoylphosphatidylserine

ECD:

extracellular domain

GPCR:

G-protein-coupled receptor

HER3:

human epidermal growth factor receptor-3

IgM:

immunoglobulin M

mAbs:

monoclonal protein antibodies

MBP:

maltose binding protein

NT:

neurotensin

PSMA:

prostate-specific membrane antigen

SELEX:

systematic evolution of ligands by exponential enrichment

References

  1. Yarus, M. Life from an RNA World: the ancestor within. Harvard University Press, New York, 2010.

    Google Scholar 

  2. Connell, G.J., Illangsekare, M., Yarus, M. Three small ribooligonucleotides with specific arginine sites. Biochemistry 32 (1993) 5497–5502.

    CAS  Article  PubMed  Google Scholar 

  3. Khvorova, A., Kwak, Y.-G., Tamkun, M., Majerfeld, I. and Yarus, M. RNAs that bind and change the permeability of phospholipid membranes. Proc. Natl. Acad. Sci. USA 96 (1999) 10649–10654.

    CAS  Article  PubMed  Google Scholar 

  4. Yarus, M. A specific amino acid binding site composed of RNA. Science 240 (1988) 1751–1758.

    CAS  Article  PubMed  Google Scholar 

  5. Roth, A., Winkler, W.C., Regulski, E.E., Lee, B.W.K., Lim, J., Jona, I., Barrick, J.E., Ritwik, A., Kim, J.N., Welz, R., Iwata-Reuyl, D. and Breaker, R.R. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat. Struct. Mol. Biol. 14 (2007) 308–317.

    CAS  Article  PubMed  Google Scholar 

  6. Spitale, R.C., Terelli, A.T., Krucinska, J., Bandarlan, V., Wedekind, J.E. The structural basis for recognition of the preQ0 metabolite by an unusually small riboswitch aptamer domain. J. Biol. Chem. 284 (2009) 11012–11016.

    CAS  Article  PubMed  Google Scholar 

  7. Ellington, A.D. and Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346 (1990) 818–822.

    CAS  Article  PubMed  Google Scholar 

  8. Tuerk, C. and Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA-polymerase. Science 249 (1990) 505–510.

    CAS  Article  PubMed  Google Scholar 

  9. Janas, T., Widmann, J.J., Knight, R. and Yarus, M. Simple, recurrent RNA binding sites for L-arginine. RNA (2010) 805–816.

  10. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. and Toole, J.J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355 (1992) 564–566.

    CAS  Article  PubMed  Google Scholar 

  11. Anderson, P.C. and Mecozzi, S. Unusually short RNA sequences: design of a 13-mer RNA that selectively binds and recognizes theophylline. J. Am. Chem. Soc. 127 (2005) 5290–5291.

    CAS  Article  PubMed  Google Scholar 

  12. Farokhzad, O.C., Cheng, J., Teply, B.A., Sherifi, I., Jon, S., Kantoff, P.W., Richie, J.P. and Langer, R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 103 (2006) 6315–6320.

    CAS  Article  PubMed  Google Scholar 

  13. Song, S., Wang, L., Li, J., Zhao, J. and Fan, C. Aptamer-based biosensors. Trends Anal. Chem. 27 (2008) 108–117.

    CAS  Article  Google Scholar 

  14. Lee, J.O., So, H.M., Jeon, E.K., Chang, H., Won, K. and Kim, Y.H. Aptamers as molecular recognition elements for electrical nanobiosensors. Anal. Bioanal. Chem. 390 (2008) 1023–1032.

    CAS  Article  PubMed  Google Scholar 

  15. Barbas, A.S. and White, R.R. The development and testing for cancer. Curr. Opin. Investig. Drugs 10 (2009) 572–578.

    CAS  PubMed  Google Scholar 

  16. Hicke, B.J., Marion, C., Chang, Y.F., Gould, T., Lynott, C.K., Parma, D., Schmidt, P.G. and Warren, S. Tenascin-C aptamers are generated using tumor cells and purified protein. J. Biol. Chem. 276 (2001) 48644–48654.

    CAS  Article  PubMed  Google Scholar 

  17. Pestourie, C. Tavitian, B. and Duconge, F. Aptamets against extracellular targets for in vivo applications. Biochimie 87 (2005) 921–930.

    CAS  Article  PubMed  Google Scholar 

  18. Janas, T., Janas, T. and Yarus, M. RNA, lipids and membranes. in: The RNA World III (Gesteland,, R., Cech, T.R. and Atkins, J., Eds.), Cold Spring Harbor Laboratory Press, 2006, 207–225.

  19. Shamah, S.M., Healy, J.M. and Cload, S.T. Complex target SELEX. Acc. Chem. Res. 41 (2008) 130–138.

    CAS  Article  PubMed  Google Scholar 

  20. Li, N., Ebright, J.N., Stovall, G.M., Chen, X., Nguyen, H.H., Singh, A., Syrett, A. and Ellington, A.D. Technical and biological issues relevant to cell typing with aptamers. J. Proteome Res. 8 (2009) 2438–2448.

    CAS  Article  PubMed  Google Scholar 

  21. Lupold, S.E., Hicke, B.J., Lin, Y. and Coffey, D.S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 62 (2002) 4029–4033.

    CAS  PubMed  Google Scholar 

  22. Chen, C.h.B., Chernis, G.A., Hoang, V.Q. and Landgraf, R. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc. Natl. Acad. Sci. USA 100 (2003) 9226–9231.

    CAS  Article  PubMed  Google Scholar 

  23. Rentmeister, A., Bill, A., Wahle, T., Walter, J. and Famulok, M. RNA aptamers selectively modulate protein recruitment to the cytoplasmic domain of β-secretase BACE1 in vitro. RNA 12 (2006) 1650–1660.

    CAS  Article  PubMed  Google Scholar 

  24. O’Connell, D., Koenig, A., Jennings, S., Hicke, B., Han, H.L., Fitzwater, T., Chang, Y.F., Varki, N., Parma, D. and Varki, A. Calcium-dependent oligonucleotide antagonists specific for L-selectin. Proc. Natl. Acad. Sci. USA 93 (1996) 5883–5887.

    Article  PubMed  Google Scholar 

  25. Lee, H.K., Choi, Y.S., Park, Y.A. and Jeong, S. Modulation of oncogenic transcription and alternative splicing by β-catenin and an RNA aptamer in colon cancer cells. Cancer Res. 66 (2006) 10560–10566.

    CAS  Article  PubMed  Google Scholar 

  26. Tanaka, Y., Akagi, K., Nakamura, Y. and Kozu, T. RNA aptamers targeting the carboxyl terminus of KRAS oncoprotein generated by an improved SELEX with isothermal RNA amplification. Oligonucleotides 17 (2007) 12–21.

    CAS  Article  PubMed  Google Scholar 

  27. Jeon, S.H., Kayhan, B., Ben-Yedidia, T. and Arnon, R. A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J. Biol. Chem. 279 (2004) 48410–48419.

    CAS  Article  PubMed  Google Scholar 

  28. Ferreira, C.S.M., Matthews, C.S. and Missailidis, S. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol. 27 (2006) 289–301.

    CAS  Article  Google Scholar 

  29. Daniels, D.A., Sohal, A.K., Rees, S. and Grisshammer, R. Generation of RNA aptamers to the G-protein-coupled receptor for neurotensin, NTS-1. Anal. Biochem. 305 (2002) 214–226.

    CAS  Article  PubMed  Google Scholar 

  30. Joshi, R., Janagama, H., Dwivedi, H.P., Kumar, T.M.A.S., Jaykus, L.A. Schefers, J. and Sreevatsan, S. Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol. Cell. Probes 23 (2009) 20–28.

    CAS  Article  PubMed  Google Scholar 

  31. Ulrich, H., Ippolito, J.E., Pagan, O.R., Eterovic, V.A., Hann, R.M., Shi, H., Lis, J.T., Eldefrawi, M.E. and Hess, G.P. In vitro selection of RNA molecules that displace cocaine from the membrane-bound nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 95 (1998) 14051–14056.

    CAS  Article  PubMed  Google Scholar 

  32. Morris, K.N., Jensen, K.B., Julin, C.M., Weil, M. and Gold, L. High affinity ligands from in vitro selection: complex target. Proc. Natl. Acad. Sci. USA 95 (1998) 2902–2907.

    CAS  Article  PubMed  Google Scholar 

  33. Shangguan, D., Li, Y., Tang, Z., Cao, Z.C., Chen, H.W., Mallikaratchy, P., Sefah, K., Yang, C.J. and Tan, W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 103 (2006) 11838–11843.

    CAS  Article  PubMed  Google Scholar 

  34. Homann, M. and Göringer, H.U. Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res. 27 (1999) 2006–2014.

    CAS  Article  PubMed  Google Scholar 

  35. Blank, M., Weinschenk, T., Priemer, M. and Schluesener, H. Systematic evolution of DNA aptamer binding to rat brain tumor microvessels. J. Biol. Chem. 276 (2001) 16464–16468.

    CAS  Article  PubMed  Google Scholar 

  36. Mallikaratchy, P., Tang, Z., Kwame, S., Meng, L., Shangguan, D. and Tan, W. Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol. Cell. Proteomics 6 (2007) 2230–2238.

    CAS  Article  PubMed  Google Scholar 

  37. Shangguan, D., Cao, Z., Meng, L., Mallikaratchy, P., Sefah, K., Wang, H., Li, Y. and Tan, W. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J. Proteome Res. 7 (2008) 2133–2139.

    CAS  Article  PubMed  Google Scholar 

  38. Berezovski, M.V., Lechmann, M., Musheev, M.U., Mak, T.W. and Krylov, S.N. Aptamer-facilitated biomarker discovery (AptaBiD). J. Am. Chem. Soc. 130 (2008) 9137–9143.

    CAS  Article  PubMed  Google Scholar 

  39. Ulrich, H., Magdesian, M.H., Alves, M.J.M. and Colli, W. In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J. Biol. Chem. 277 (2002) 20756–20762.

    CAS  Article  PubMed  Google Scholar 

  40. Cerchia, L., Duconge, F., Pestourie, C., Boulay, J., Aissouni, Y., Gombert, K., Tavitian, B., de Franciscis, V. and Libri, D. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLOS Biol. 3 (2005) 697–704.

    CAS  Article  Google Scholar 

  41. Gopinath, S.C.B., Misono, T.S., Kawasaki, K., Mizuno, T., Imai, M., Odegiri, T. and Kumar, P.K.R. An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J. Gen. Virol. 87 (2006) 479–487.

    CAS  Article  PubMed  Google Scholar 

  42. Ohuchi, S.P., Ohtsu, T. and Nakamura, Y. Selection of RNA aptamers against recombinant transforming growth factor-β type III receptor displayed on cell surface. Biochimie 88 (2006) 897–904.

    CAS  Article  PubMed  Google Scholar 

  43. Sazani, P.L., Larraide, R. and Szostak, J.W. A small aptamer with strong and specific recognition of the triphosphate of ATP. J. Am. Chem Soc. 126 (2004) 8370–8371.

    CAS  Article  PubMed  Google Scholar 

  44. Zimmerman, G.R, Jenison, R.D., Wick, C.L., Simorre, J.P. and Pardi, A. Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat. Struct. Biol. 4 (1997) 644–649.

    Article  Google Scholar 

  45. Majerfeld, I. and Yarus, M. An RNA pocker for an aliphatic hydrophobe. Nature Struct. Biol. 1 (1994) 287–292.

    CAS  Article  PubMed  Google Scholar 

  46. Majerfeld, I. and Yarus, M. Isoleucine:RNA sites with associated coding sequences. RNA 4 (1998) 471–478.

    CAS  PubMed  Google Scholar 

  47. Gilbert, B.A., Sha, M., Wathen, S.T. and Rando, R.R. RNA aptamers that specifically bind to a K Ras-derived farnesylated peptide. Bioorg. Med. Chem. 5 (1997) 1115–1122.

    CAS  Article  PubMed  Google Scholar 

  48. Sussman, D., Nix, J.C. and Wilson, C. The structural basis for molecular recognition by the vitamin B12 RNA aptamer. Nat. Struct. Biol. 7 (2000) 53–57.

    CAS  Article  PubMed  Google Scholar 

  49. Illangasekare, M. and Yarus, M. Phenylalanine-binding RNAs and genetic code evolution. J. Mol. Evol. 54 (2002) 298–311.

    CAS  PubMed  Google Scholar 

  50. Betat, H., Vogel, S., Struhalla, M., Förster, H.H., Famulok, M., Welzel, P. and Hahn, U. Aptamers that recognize the lipid moiety of the antibiotic moenomycin A. Biol. Chem. 384 (2003) 1497–1500.

    CAS  Article  PubMed  Google Scholar 

  51. Brockstedt, U., Uzarowska, A., Montpetit, A., Pfau, W. and Labuda, D. In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines. Biochem. Biophys. Res Commun. 313 (2004) 1004–1008.

    CAS  Article  PubMed  Google Scholar 

  52. Janas, T., Janas, T. and Yarus, M. Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res. 34 (2006) 2128–2136.

    CAS  Article  PubMed  Google Scholar 

  53. Vlassov, A., Khvorova, A., and Yarus, M. Binding and disruption of phosholipid bilayers by supramolecular RNA complexes. Proc. Natl. Acad. Sci. USA 98 (2001) 7706–7711.

    CAS  Article  PubMed  Google Scholar 

  54. Janas, T. and Yarus, M. Visualization of membrane RNAs. RNA 9 (2003) 1353–1361.

    CAS  Article  PubMed  Google Scholar 

  55. Janas, T., Janas, T. and Yarus, M. A membrane transporter for tryptophan composed of RNA. RNA 10 (2004) 1541–1549.

    CAS  Article  PubMed  Google Scholar 

  56. Janas, T. and Janas, T. A Search for membrane RNAs that can inhibit formation of toxic amyloid aggregates. Sie Foundation Symposium, Aurora, 2006, 13.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Teresa Janas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Janas, T., Janas, T. The selection of aptamers specific for membrane molecular targets. Cell Mol Biol Lett 16, 25–39 (2011). https://doi.org/10.2478/s11658-010-0023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0023-3

Key words

  • RNA
  • SELEX
  • Aptamers
  • Membranes
  • Membrane proteins
  • Lipids
  • Liposomes
  • Rafts
  • Membrane transporters