Skip to main content

R proteins as fundamentals of plant innate immunity

Abstract

Plants are attacked by a wide spectrum of pathogens, being the targets of viruses, bacteria, fungi, protozoa, nematodes and insects. Over the course of their evolution, plants have developed numerous defense mechanisms including the chemical and physical barriers that are constitutive elements of plant cell responses locally and/or systemically. However, the modern approach in plant sciences focuses on the evolution and role of plant protein receptors corresponding to specific pathogen effectors. The recognition of an invader’s molecules could be in most cases a prerequisite sine qua non for plant survival. Although the predicted three-dimensional structure of plant resistance proteins (R) is based on research on their animal homologs, advanced technologies in molecular biology and bioinformatics tools enable the investigation or prediction of interaction mechanisms for specific receptors with pathogen effectors. Most of the identified R proteins belong to the NBS-LRR family. The presence of other domains (including the TIR domain) apart from NBS and LRR is fundamental for the classification of R proteins into subclasses. Recently discovered additional domains (e.g. WRKY) of R proteins allowed the examination of their localization in plant cells and the role they play in signal transduction during the plant resistance response to biotic stress factors. This review focuses on the current state of knowledge about the NBS-LRR family of plant R proteins: their structure, function and evolution, and the role they play in plant innate immunity.

Abbreviations

CC:

coiled-coil domain

CNL:

NBS-LRR receptors containing CC domain

HR:

hypersensitive response

LRR:

leucine-rich repeat

MAMP:

microbe-associated molecular pattern

MIMP:

microbe-induced molecular pattern

NB:

nucleotide binding

NBARC:

NB domain with ARC motif

NBS:

nucleotide-binding site

PAMP:

pathogen-associated molecular pattern

PRR:

pattern recognition receptor

TIR:

Toll and interleukin receptor

TLR:

Toll-like receptor

TNL:

NBS-LRR receptor containing TIR domain

References

  1. Uematsu, S. and Akira, S. PRRs in pathogen recognition. Centr. Eur. J. Biol. 1 (2006) 299–313.

    CAS  Google Scholar 

  2. Altenbach, D. and Robatzek, S. Pattern recognition receptors: from the cell surface to intracellular dynamics. Mol. Plant-Microbe In. 20 (2007) 1031–1039.

    CAS  Google Scholar 

  3. Iriti, M. and Faoro, F. Review of innate and specific immunity in plants and animals. Mycopathologia 164 (2007) 57–64.

    PubMed  Google Scholar 

  4. Zipfel, C. Pattern-recognition receptors in plant innate immunity. Curr. Opin. Immunol. 20 (2008) 10–16.

    CAS  PubMed  Google Scholar 

  5. Lukasik, E. and Takken, F. STANDing strong, resistance proteins instigators of plant defence. Curr. Opin. Plant Biol. 12 (2009) 427–436.

    CAS  PubMed  Google Scholar 

  6. Peart, J.R., Mestre, P., Lu, R., Malcuit, I. and Baulcombe, D.C. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr. Biol. 15 (2005) 968–973.

    CAS  PubMed  Google Scholar 

  7. Gabriëls, S.H.E.J, Vossen, J.H., Ekengren, S.K., van Ooijen, G., Abd-El-Haliem, A.M., van den Berg, G.C.M., Rainey, D.Y., Martin, G.B., Takken, F.L.W., de Wit, P.J.G.M. and Joosten, M.H.A.J. An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant J. 50 (2007) 14–28.

    PubMed  Google Scholar 

  8. Faigón-Soverna, A., Harmon, F.G., Storani, L., Karayekov, E., Staneloni, R.J., Gassmann, W., Más, P., Casal, J.J., Kay, S.A. and Yanovsky, M.J. A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development. Plant Cell 18 (2006) 2919–2928.

    PubMed  Google Scholar 

  9. Igari, K., Endo, S., Hibara, K., Aida, M., Sakakibara, H., Kawasaki, T., Tasaka, M. Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant J. 55 (2008) 14–27.

    CAS  PubMed  Google Scholar 

  10. Jones, J.D.G. and Dangl, J. The plant immune system. Nature 444 (2006) 323–329.

    CAS  PubMed  Google Scholar 

  11. de Wit, P.J.G.M. How plants recognize pathogens and defend themselves. Cell. Mol. Life Sci. 64 (2007) 2726–2732.

    PubMed  Google Scholar 

  12. Ye, Z. and Ting, J.P.-Y. NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr. Opin. Immunol. 20 (2008) 3–9.

    CAS  PubMed  Google Scholar 

  13. Hein, I., Gilroy, E.M., Armstrong, M.R., Birch, P.R. The zig-zag-zig in oomycete-plant interactions. Mol. Plant Pathol. 4 (2009) 547–562.

    Google Scholar 

  14. Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9 (1971) 275–298.

    Google Scholar 

  15. Tameling, W.I.L. and Baulcombe, D.C. Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to potato virus X. Plant Cell 19 (2007) 1682–1694.

    CAS  PubMed  Google Scholar 

  16. van der Hoorn, R.A.L. and Kamoun, S. From guard to decoy: A new model for perception of plant pathogen effectors. Plant Cell 20 (2008) 2009–2017.

    PubMed  Google Scholar 

  17. Mackey, D. and McFall, A.J. MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Mol. Microbiol. 61 (2006) 1365–1371.

    CAS  PubMed  Google Scholar 

  18. Bittel, P. and Robatzek, S. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr. Opin. Plant Biol. 10 (2007) 335–341.

    CAS  PubMed  Google Scholar 

  19. Caplan, J.L., Padmanabhan, M. and Dinesh-Kumar, S.P. Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3 (2008) 126–135.

    CAS  PubMed  Google Scholar 

  20. Lee, J., Rudd, J.J., Macioszek, V.K. and Scheel, D. Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. J. Biol. Chem. 279 (2004) 22440–22448.

    CAS  PubMed  Google Scholar 

  21. da Cunha, L., McFall, A.J. and Mackey, D. Innate immunity in plants: a continuum of layered defenses. Microbes Infect. 8 (2006) 1372–1381.

    PubMed  Google Scholar 

  22. He, P., Shan, L. and Scheen, J. Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell. Microbiol. 9 (2007) 1385–1396.

    CAS  PubMed  Google Scholar 

  23. Shen, Q.-H. and Schulze-Lefert, P. Ruble in the jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. EMBO J. 26 (2007) 4293–4301.

    CAS  PubMed  Google Scholar 

  24. Rairdan, G.J. and Moffett, P. Brothers in arms? Common and contrasting themes in pathogen perception by plant NB-LRR and animal NACHT-LRR proteins. Microbes Infect. 9 (2007) 677686.

    Google Scholar 

  25. Oakley, M.G. and Hollenbeck, J.J. The design of antiparallel coiled coils. Curr. Opin. Struct. Biol. 11 (2001) 450–457.

    CAS  PubMed  Google Scholar 

  26. Chen, G., Pan, D., Zhou, Y., Lin, S. and Ke, X. Diversity and evolutionary relationship of nucleotide binding site-encoding disease-resistance gene analogues in sweet potato (Ipomoea batatas Lam.). J. Biosci. 32 (2007) 713–721.

    CAS  PubMed  Google Scholar 

  27. Pålsson-McDermott, E.M. and O’Neill, L.A.J. Building an immune system from nine domains. Bioch. Soc. Trans. 35 (2007) 1437–1444.

    Google Scholar 

  28. Meyers, B.C., Dickerman, A.W., Michelmore, R.W., Sivaramakrishnan, S., Sobral, B.W. and Young, N.D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20 (1999) 317–332.

    CAS  PubMed  Google Scholar 

  29. Bai, J., Pennill, L.A., Ning, J., Lee, S.W., Ramalingam, J., Webb, C.A., Zhao, B., Sun, Q., Nelson, J.C., Leach, J.E. and Hulbert, S.H. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res. 12 (2002) 1871–1884.

    CAS  PubMed  Google Scholar 

  30. Meyers, B.C., Kozik, A., Griego, A., Kuang, H. and Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15 (2003) 809–834.

    CAS  PubMed  Google Scholar 

  31. Deslandes, L., Olivier, J., Peeters, N., Feng, D.X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S. and Marco, Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl. Acad. Sci. USA 100 (2003) 8024–8029.

    CAS  PubMed  Google Scholar 

  32. Radwan, O., Gandhi, S., Heesacker, A., Whitaker, B., Taylor, C., Plocik, A., Kesseli, R., Kozik, A., Michelmore, R.W. and Knapp, S.J. Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Mol. Genet. Genomics 280 (2008) 111–125.

    CAS  PubMed  Google Scholar 

  33. Kohler, A., Rinaldi, C., Duplessis, S., Baucher, M., Geelen, D., Duchaussoy, F., Meyers, B.C., Boerjan, W. and Martin, F. Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol. Biol. 66 (2008) 619–636.

    CAS  PubMed  Google Scholar 

  34. Miller, R.N., Bertioli, D.J., Baurens, F.C., Santos, C.M., Alves, P.C., Martins, N.F., Togawa, R.C., Souza, M.T. and Pappas, G.J. Analysis of non-TIR-NBS-LRR resistance gene analogs in Musa acuminata Colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol. 8 (2008) 15.

    PubMed  Google Scholar 

  35. Zhou, T., Wang, Y., Chen, J.-Q., Araki, H., Jing, Z., Jiang, K., Shen, J. and Tian, D. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR-NBS-LRR genes. Mol. Genet. Genomics 271 (2004) 402–415.

    CAS  PubMed  Google Scholar 

  36. Porter, B., Paidi, M., Ming, R., Alam, M., Nishijima. W., Zhu, Y. Genomewide analysis of Carica papaya reveals a small NBS resistance gene family. Mol. Genet. Genomics 6 (2009) 609–626.

    Google Scholar 

  37. Xiao, S., Wang, W. and Yang, X. Evolution of resistance genes in plants. in Innate immunity of plants, animals and humans. (Heine, H., Ed.), Springer-Verlag, Berlin Heidelberg, 2008, 1–26.

    Google Scholar 

  38. Takahashi, N., Takahashi, Y. and Putnam, F.W. Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich α2-glycoprotein of human serum. Proc. Natl. Acad. Sci. USA 82 (1985) 1906–1910.

    CAS  PubMed  Google Scholar 

  39. McHale, L., Tan, X., Koehl, P. and Michelmore, R.W. Plant NBS-LRR proteins: adaptable guards. Genome Biol. 7 (2006) 212.

    PubMed  Google Scholar 

  40. Kajava, A.W. Structural diversity of leucine-rich repeat proteins. J. Mol. Biol. 277 (1998) 519527.

    Google Scholar 

  41. Bella, J., Hindle, K.L., McEwan, P.A. and Lovell, S.C. The leucine-rich repeat structure. Cell. Mol. Life Sci. 65 (2008) 2307–2333.

    CAS  PubMed  Google Scholar 

  42. Stange, C., Matus, J.T., Domínguez, C., Perez-Acle, T. and Arce-Johnson, P. The N-homologue LRR domain adopts a folding which explains the TMV-Cg-induced HR-like response in sensitive tobacco plants. J. Mol. Graph. Model 26 (2008) 850–860.

    CAS  PubMed  Google Scholar 

  43. Kobe, B. and Kajava, A.V. When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem. Sci. 25 (2000) 509–515.

    CAS  PubMed  Google Scholar 

  44. Dodds, P.N., Lawrence, G.J. and Ellis, J.G. Six amino acid changes confined to the leucine-rich repeat β-strand/β-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell 13 (2001) 163–178.

    CAS  PubMed  Google Scholar 

  45. Wang, C.-I.A., Gunčar, G., Forwood, J.K., Teh, T., Catanzariti, A.-M., Lawrence, G.J., Loughlin, F.E., Mackay, J.P., Schirra, H.J., Anderson, P.A., Ellis, J.G., Dodds, P.N. and Kobe, B. Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity. Plant Cell 19 (2007) 2898–2912.

    CAS  PubMed  Google Scholar 

  46. Jin, M.S., Kim, S.E., Heo, J.Y., Lee, M.E., Kim, H.M., Paik, S.-G., Lee, H. and Lee, J.-O. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a triacylated lipopeptide. Cell 130 (2007) 1071–1082.

    CAS  PubMed  Google Scholar 

  47. Liu, J., Liu, X. and Dai, L., Wang, G. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J. Genet. Genomics 34 (2007) 765–776.

    PubMed  Google Scholar 

  48. Caplan, J.L., Mamillapalli, P., Burch-Smith, T.M., Czymmek, K. and Dinesh-Kumar, S.P. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132 (2008) 449–462.

    CAS  PubMed  Google Scholar 

  49. Rairdan, G.J. and Moffett, P. Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18 (2006) 2082–2093.

    CAS  PubMed  Google Scholar 

  50. van Ooijen, G., Mayr, G., Albrecht, M., Cornelissen, B.J.C. and Takken, F.L.W. Transcomplementation, but not physical association of the CC-NB-ARC and LRR domains of tomato R protein Mi-1.2 is altered by mutations in the ARC2 subdomain. Mol. Plant 1 (2008) 401–410.

    PubMed  Google Scholar 

  51. van der Biezen, E.A. and Jones, J.D.G. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8 (1998) R226–R228.

    PubMed  Google Scholar 

  52. Tameling, W.I.L., Vossen, J.H., Albrecht, M., Lengauer, T., Berden, J.A., Haring, M.A., Cornelissen, B.J.C. and Takken, F.L.W. Mutations in the NBARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol. 140 (2006) 1233–1245.

    CAS  PubMed  Google Scholar 

  53. Proell, M., Riedl, S.J., Fritz, J.R., Rojas, A.M. and Schwarzenbacher, R. The Nod-like receptor (NLR) family: A tale of similarities and differences. PLoS ONE 3 (2008) e2119.

    PubMed  Google Scholar 

  54. Riedl, S.J., Li, W., Chao, Y. and Schwarzenbacher, R., Shi, Y. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434 (2005) 926–933.

    CAS  PubMed  Google Scholar 

  55. Takken, F.L.W., Albrecht, M. and Tameling, W.I.L. Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant. Biol. 9 (2006) 383–390.

    CAS  PubMed  Google Scholar 

  56. Howles, P., Lawrence, G., Finnegan, J., McFadden, H., Ayliffe, M., Dodds, P. and Ellis, J. Autoactive alleles of the flax L6rust resistance gene induce nonrace-specific rust resistance associated with the hypersensitive response. Mol. Plant-Microbe In. 18 (2005) 570582.

    Google Scholar 

  57. Moffett, P., Farnham, G., Peart, J. and Baulcombe, D.C. Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J. 21 (2002) 4511–4519.

    CAS  PubMed  Google Scholar 

  58. Rairdan, G.J., Collier, S.M., Sacco, M.A., Baldwin, T.T., Boettrich, T. and Moffett, P. The coiled coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell 20 (2008) 739–751.

    CAS  PubMed  Google Scholar 

  59. Tameling, W.I.L. and Takken, F.L.W. Resistance proteins: Scouts of the plant innate immune system. Eur. J. Plant Pathol. 121 (2008) 243–255.

    Google Scholar 

  60. Janssens, S. and Beyaert, R. Role of Toll-like receptors in pathogen recognition. Clin. Microbiol. Rev. 16 (2003) 637–646.

    CAS  PubMed  Google Scholar 

  61. Li, C., Zienkiewicz, J. and Hawiger, J. Interactive sites in the MyD88 Toll/interleukin (IL) 1 receptor domain responsible for coupling to the IL1beta signaling pathway. J. Biol. Chem. 28 (2005) 26152–26159.

    Google Scholar 

  62. Gautam, J.K., Ashish, Comeau, L.D., Krueger, J.K. and Smith, M.F. Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling. J. Biol. Chem. 40 (2006) 30132–30142.

    Google Scholar 

  63. Burch-Smith, T.M., Schiff, M., Caplan, J.L., Tsao, J., Czymmek, K. and Dinesh-Kumar, S.P. A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol. 5 (2007) e68.

    PubMed  Google Scholar 

  64. Mestre, P. and Baulcombe, D.C. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18 (2006) 491–501.

    CAS  PubMed  Google Scholar 

  65. Lupas, A. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21 (1996) 375–382.

    CAS  PubMed  Google Scholar 

  66. Ade, J., DeYoung, B.J., Golstein, C. and Innes, R.W. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc. Natl. Acad. Sci. USA 104 (2007) 2531–2536.

    CAS  PubMed  Google Scholar 

  67. Ulker, B. and Somssich, I.E. WRKY transcription factors: from DNA binding towards biological function. Curr. Opin. Plant Biol. 7 (2004) 491–498.

    PubMed  Google Scholar 

  68. Eulgem, T. and Somssich, I.E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10 (2007) 366–371.

    CAS  PubMed  Google Scholar 

  69. Liu, J., Coaker, G. Nuclear trafficking during plant innate immunity. Mol. Plant 1 (2008) 411–422.

    CAS  PubMed  Google Scholar 

  70. Deslandes, L., Olivier, J., Theulieres, F., Hirsch, J., Feng, D.X., Bittner-Eddy, P.D., Beynon, J. and Marco, Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc. Natl. Acad. Sci. USA 99 (2002) 2404–2409.

    CAS  PubMed  Google Scholar 

  71. Noutoshi, Y., Ito, T., Seki, M., Nakashita, H., Yoshida, S., Marco, Y., Shirasu, K. and Shinozaki, K. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J. 43 (2005) 873–888.

    CAS  PubMed  Google Scholar 

  72. Akita, M. and Valkonen, J. A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes. J. Mol. Evol. 55 (2000) 595–605.

    Google Scholar 

  73. Liu, J.-J. and Ekramoddoullah, A.K.M. Isolation, genetic variation and expression of TIRNBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.). Mol. Genet. Genomics 270 (2003) 432–441.

    CAS  PubMed  Google Scholar 

  74. Jermstad, K.D., Sheppard, L.A., Kinloch, B.B., Delfino-Mix, A., Ersoz, E.S., Krutovsky, K.V. and Neale, D.B. Isolation of a full-length CC-NBS-LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity. Tree Genet. Genomes 2 (2006) 76–85.

    Google Scholar 

  75. Pan, Q., Wendel, J. and Fluhr, R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50 (2000) 203–213.

    CAS  PubMed  Google Scholar 

  76. Tian, Y., Fan, L., Thurau, T., Jung, C. and Cai, D. The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. J. Mol. Evol. 58 (2004) 40–53.

    CAS  PubMed  Google Scholar 

  77. Bomblies, K., Lempe, J., Epple, P., Warthmann, N., Lanz, C., Dangl, J.L. and Weigel, D. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol. 5 (2007) e236.

    PubMed  Google Scholar 

  78. Jiang, H., Wang, C., Ping, L., Tian, D. and Yang, S. Pattern of LRR nucleotide variation in plant resistance genes. Plant Sci. 173 (2007) 253–261.

    CAS  Google Scholar 

  79. van der Hoorn, R.A.L., De Wit, P.J.G.M. and Joosten, M.H.A.J. Balancing selection favors guarding resistance proteins. Trends Plant Sci. 7 (2002) 67–71.

    PubMed  Google Scholar 

  80. Meyers, B.C., Kaushik, S., Nandety, R.S. Evolving disease resistance genes. Curr. Opin. Plant Biol. 8 (2005) 129–134

    CAS  PubMed  Google Scholar 

  81. Rose, L.E., Bittner-Eddy, P.D., Langley, C.H., Holub, E.B., Michelmore, R.W., Beynon, J.L. The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 166 (2004) 1517–1527.

    CAS  PubMed  Google Scholar 

  82. Swetha Priya, R. and Subramanian, R.B. Isolation and molecular analysis of R gene in resistant Zingiber officinale (ginger) varieties against Fusarium oxysporum f.sp. zingiberi. Bioresource Technol. 99 (2008) 4540–4543.

    CAS  Google Scholar 

  83. van der Biezen, E.A., Freddie, C.T., Kahn, K., Parker, J.E. and Jones, J.D.G. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NBLRR genes and confers downy mildew resistance through multiple signalling components. Plant J. 29 (2002) 439–451.

    PubMed  Google Scholar 

  84. Rentel, M.C., Leonelli, L., Dahlbeck, D., Zhao, B. and Staskawicz, B.J. Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc. Natl. Acad. Sci. USA 105 (2008) 1091–1096.

    CAS  PubMed  Google Scholar 

  85. Mucyn, T.S., Clemente, A., Andriotis, V.M., Balmuth, A.L., Oldroyd, G.E., Staskawicz, B.J. and Rathjen, J.P. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18 (2006) 2792–2806.

    CAS  PubMed  Google Scholar 

  86. Xing, W., Zou, Y., Liu, Q., Liu, J., Luo, X., Huang, Q., Chen, S., Zhu, L., Bi, R., Hao, Q., Wu, J.-W., Zhou, J.-M. and Chai, J. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449 (2007) 243–248.

    CAS  PubMed  Google Scholar 

  87. Aarts, N., Metz, M., Holub, E., Staskawicz, B.J., Daniels, M.J. and Parker, J.E. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 95 (1998) 1030610311.

    Google Scholar 

  88. Falk, A., Feys, B.J., Frost, L.N., Jones, J.D.G., Daniels, M.J. and Parker, J.E. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA 96 (1999) 3292–3297.

    CAS  PubMed  Google Scholar 

  89. Hu, G., de Hart, A.K.A., Li, Y., Ustach, C., Handley, V., Navarre, R., Hwang, C.-F., Aegerter, B.J., Williamson, V.M. and Baker, B. EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant J. 42 (2005) 376–391.

    CAS  PubMed  Google Scholar 

  90. Wiermer, M., Feys, B.J. and Parker, J.E. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 8 (2005) 383–389.

    CAS  PubMed  Google Scholar 

  91. Bartsch, M., Gobbato, E., Bednarek, P., Debey, S., Schultze, J.L., Bautor, J. and Parker, J.E. Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 18 (2006) 1038–1051.

    CAS  PubMed  Google Scholar 

  92. El Oirdi, M. and Bouarab, K. Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea. New Phytol. 175 (2007) 131–139.

    PubMed  Google Scholar 

  93. Tör, M., Gordon, P., Cuzick, A., Eulgem, T., Sinapidou, E., Mert-Türk, F., Can, C., Dangl, J.L. and Holub, E.B. Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell 14 (2002) 993–1003.

    PubMed  Google Scholar 

  94. Shen, Q.-H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K. and Schulze-Lefert, P. Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15 (2003) 732–744.

    CAS  PubMed  Google Scholar 

  95. Schulze-Lefert, P. Plant immunity: the origami of receptor activation. Curr. Biol. 14 (2004) R22–R24.

    CAS  PubMed  Google Scholar 

  96. Botër, M., Amigues, B., Peart, J., Breuer, C., Kadota, Y., Casais, C., Moore, G., Kleanthous, C., Ochsenbein, F., Shirasu, K. and Guerois, R. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19 (2007) 3791–3804.

    PubMed  Google Scholar 

  97. Hubert, D., He, Y., McNulty, B., Tornero, P., Dangl, J. Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proc. Natl. Acad. Sci. 24 (2009) 9556–9563.

    Google Scholar 

  98. Noël, L.D., Cagna, G., Stuttmann, J., Wirthmüller, L., Betsuyaku, S., Witte, C.P., Bhat, R., Pochon, N., Colby, T. and Parker, J.E. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19 (2007) 4061–4076.

    PubMed  Google Scholar 

  99. Kadota, Y., Amigues, B., Ducassou, L., Madaoui, H., Ochsenbein, F., Guerois, R., Shirasu, K. Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants. EMBO Rep. 12 (2008) 1209–1215.

    Google Scholar 

  100. Kadota, Y., Shirasu, K., Guerois, R. NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem. Sci. (2010) doi:10.1016/j.tibs.2009.12.005

  101. Johnson, C., Mhatre, A. and Arias, J. NPR1 preferentially binds to the DNA-inactive form of Arabidopsis TGA2. Biochim. Biophys. Acta 1779 (2008) 583–589.

    CAS  PubMed  Google Scholar 

  102. Kuang, H., Woo, S.-S., Meyers, B.C., Nevo, E. and Michelmore, R.W. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16 (2004) 2870–2894.

    CAS  PubMed  Google Scholar 

  103. Day, B., Dahlbeck, D., Huang, J., Chisholm, S.T., Li, D. and Staskawicz, B.J. Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Plant Cell 17 (2005) 1292–1305.

    CAS  PubMed  Google Scholar 

  104. Day, B., Dahlbeck, D. and Staskawicz, B.J. NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis. Plant Cell 18 (2006) 2782–2791.

    CAS  PubMed  Google Scholar 

  105. Journot-Catalino, N., Somssich, I.E., Roby, D. and Kroj, T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18 (2006) 3289–3302.

    CAS  PubMed  Google Scholar 

  106. Oh, S.K., Baek, K.H., Park, J.M., Yi, S.Y., Yu, S.H., Kamoun, S. and Choi, D. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol. 177 (2008) 977–989.

    CAS  PubMed  Google Scholar 

  107. Lai, Z., Vinod, K., Zheng, Z., Fan, B. and Chen, Z. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol. 8 (2008) e68.

    Google Scholar 

  108. Bhattacharjee, S., Zamora, A., Azhar, M., Sacco, M., Lambert, L., Moffett, P. Virus resistance induced by NB-LRR proteins involves Argonaute4-dependent translational control. Plant J. 6 (2009) 940–951.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrzej K. Kononowicz.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Głowacki, S., Macioszek, V.K. & Kononowicz, A.K. R proteins as fundamentals of plant innate immunity. Cell Mol Biol Lett 16, 1–24 (2011). https://doi.org/10.2478/s11658-010-0024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0024-2

Key words

  • Plant innate immunity
  • Pathogen recognition
  • Plant resistance proteins