Skip to main content
  • Research Article
  • Published:

A functional analysis of G23A polymorphism and the alternative splicing in the expression of the XPA gene

Abstract

The XPA gene has a commonly occurring polymorphism (G23A) associated with cancer risk. This study assessed the functional significance of this polymorphism, which is localised near the translation start codon. Lymphoblastoid cell lines with alternative homozygous genotypes showed no significant differences in their XPA levels. The luciferase reporter assay detected no functional difference between the two sequences. Unexpectedly, we found that the alternatively spliced form of XPA mRNA lacked a part of exon 1. Only the reading frame downstream of codon Met59 was preserved. The alternative mRNA is expressed in various human tissues. The analysis of the 5’cDNA ends showed similar transcription start sites for the two forms. The in vitro expression of the alternative XPA labelled with the red fluorescent protein (mRFP) showed a lack of preferential nuclear accumulation of the XPA isoform. The biological role of the alternative XPA mRNA form remains to be elucidated.

Abbreviations

DAPI:

4’,6-diamidino-2-phenylindole

DMEM:

Dulbecco’s Modified Eagle Medium

DMSO:

dimethylsulfoxide

dNTP:

deoxyribonucleotide triphosphate

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

mRFP:

monomeric red fluorescent protein

PCR:

polymerase chain reaction

RACE:

rapid amplification of cDNA ends

RPA:

replication protein A

SNP:

single nucleotide polymorphism

TDG:

thymine-DNA glycosylase

References

  1. Hoeijmakers, J.H.J. Genome maintenance mechanisms for preventing cancer. Nature 411 (2001) 366–374.

    Article  CAS  PubMed  Google Scholar 

  2. Cleaver, J.E. Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum. J. Dermatol. Sci. 23 (2000) 1–11.

    Article  CAS  PubMed  Google Scholar 

  3. Cleaver, J.E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat. Rev. Cancer 5 (2005) 564–573.

    Article  CAS  PubMed  Google Scholar 

  4. Kraemer, K.H., Patronas, N.J., Schiffmann, R., Brooks, B.P., Tamura, D. and DiGiovanna, J.J. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience 145 (2007) 1388–1396.

    Article  CAS  PubMed  Google Scholar 

  5. Mohrenweiser, H.W. and Jones, I.M. Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation? Mutat. Res. 400 (1998) 15–24.

    CAS  PubMed  Google Scholar 

  6. Goode, E.L., Ulrich, C.M. and Potter, J.D. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol. Biomarkers Prev. 11 (2002) 1513–1530.

    CAS  PubMed  Google Scholar 

  7. Richards, F.M., Goudie, D.R., Cooper, W.N., Jene, Q., Barroso, I., Wicking, C., Wainwright, B.J. and Ferguson-Smith, M.A. Mapping the multiple self-healing squamous epithelioma (MSSE) gene and investigation of xeroderma pigmentosum group A (XPA) and PATCHED (PTCH) as candidate genes. Hum. Genet. 101 (1997) 317–322.

    Article  CAS  PubMed  Google Scholar 

  8. Butkiewicz, D., Rusin, M., Harris, C.C. and Chorazy, M. Identification of four single nucleotide polymorphisms in DNA repair genes: XPA and XPB (ERCC3) in Polish population. Human Mut. 15 (2000) 577–578.

    Article  CAS  Google Scholar 

  9. Mellon, I., Hock, T., Reid, R., Porter, P.C. and States, J.C. Polymorphisms in the human xeroderma pigmentosum group A gene and their impact on cell survival and nucleotide excision repair. DNA Repair 1 (2002) 531–546.

    Article  CAS  PubMed  Google Scholar 

  10. Park, J.Y., Park, S.H., Choi, J.E., Lee, S.Y., Jeon, H.S., Cha, S.I., Kim, C.H., Park, J.H., Kam, S., Park, R.W., Kim, I.S. and Jung, T.H. Polymorphisms of the DNA repair gene xeroderma pigmentosum group and risk of primary lung cancer. Cancer Epidemiol. Biomarkers Prev. 11 (2002) 993–997.

    CAS  PubMed  Google Scholar 

  11. Butkiewicz, D., Popanda, O., Risch, A., Edler, L., Dienemann, H., Schulz, V., Kayser, K., Drings, P., Bartsch, H. and Schmezer, P. Association between the risk for lung adenocarcinoma and a (-4) G-to-A polymorphism in the XPA gene. Cancer Epidemiol. Biomarkers Prev. 13 (2004) 2242–2246.

    CAS  PubMed  Google Scholar 

  12. Weiss, J.M., Weiss, N.S., Ulrich, C.M., Doherty, J.A., Voigt, L.F. and Chen, C. Interindividual variation in nucleotide excision repair genes and risk of endometrial cancer. Cancer Epidemiol. Biomarkers Prev. 14 (2005) 2524–2530.

    Article  CAS  PubMed  Google Scholar 

  13. Zienolddiny, S., Campa, D., Lind, H., Ryberg, D., Skaug, V., Stangeland, L., Phillips, D.H., Canzian, F. and Haugen, A. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 27 (2006) 560–567.

    Article  CAS  PubMed  Google Scholar 

  14. Sugimura, T., Kumimoto, H., Tohnai, I., Fukui, T., Matsuo, K., Tsurusako, S., Mitsudo, K., Ueda, M., Tajima, K. and Ishizaki, K. Gene-environment interaction involved in oral carcinogenesis: molecular epidemiological study for metabolic and DNA repair gene polymorphisms. J. Oral. Pathol. Med. 35 (2006) 11–18.

    Article  CAS  PubMed  Google Scholar 

  15. Guo, W., Zhou, R.M., Wan, L.L., Wang, N., Li, Y., Zhang, X.J. and Dong, X.J. Polymorphisms of the DNA repair gene xeroderma pigmentosum groups A and C and risk of esophageal squamous cell carcinoma in a population of high incidence region of North China. J. Cancer Res. Clin. Oncol. 134 (2008) 263–270.

    Article  CAS  PubMed  Google Scholar 

  16. Kiyohara, C. and Yoshimasu, K. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int. J. Med. Sci. 4 (2007) 59–71.

    CAS  PubMed  Google Scholar 

  17. Gu, J., Zhao, H., Dinney, C.P., Zhu, Y., Leibovici, D., Bermejo, C.E., Grossman, H.B. and Wu, X. Nucleotide excision repair gene polymorphisms and recurrence after treatment for superficial bladder cancer. Clin. Cancer Res. 11 (2005) 1408–1415.

    Article  CAS  PubMed  Google Scholar 

  18. Feng, J., Sun, X., Sun, N., Qin, S., Li, F., Cheng, H., Chen, B., Cao, Y., Ma, J., Cheng, L., Lu, Z., Ji, J. and Zhou, Y. XPA A23G polymorphism is associated with the elevated response to platinum-based chemotherapy in advanced non-small cell lung cancer. Acta Biochim. Biophys. Sin. 41 (2009) 429–35.

    Article  CAS  PubMed  Google Scholar 

  19. Saldivar, J.S., Lu, K.H., Liang, D., Gu, J., Huang, M., Vlastos, A.T., Follen, M. and Wu, X. Moving toward individualized therapy based on NER polymorphisms that predict platinum sensitivity in ovarian cancer patients. Gynecol. Oncol. 107 (Suppl. 1), (2007) S223–S229.

    Article  PubMed  Google Scholar 

  20. Wu, X., Zhao, H., Wei, Q., Amos, C.I., Zhang, K., Guo, Z., Qiao, Y., Hong, W.K. and Spitz, M.R. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis 24 (2003) 505–509.

    Article  CAS  PubMed  Google Scholar 

  21. Porter, P.C., Mellon, I. and States, J.C. XP-A cells complemented with Arg228Gln and Val234Leu polymorphic XPA alleles repair BPDE-induced DNA damage better than cells complemented with the wild type allele. DNA Repair 4 (2005) 341–349.

    Article  CAS  PubMed  Google Scholar 

  22. Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A. and Tsien, R.Y. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99 (2002) 7877–7882.

    Article  CAS  PubMed  Google Scholar 

  23. Barber, R.D., Harmer, D.W., Coleman, R.A. and Clark, B.J. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol. Genomics 21 (2005) 389–395.

    Article  CAS  PubMed  Google Scholar 

  24. Cleaver, J.E. and States, J.C. The DNA damage-recognition problem in human and other eucaryotic cells: the XPA damage binding protein. Biochem. J. 328 (1997) 1–12.

    CAS  PubMed  Google Scholar 

  25. Dusinska, M., Dzupinkova, Z., Wsolova, L., Harrington, V. and Collins, A.R. Possible involvement of XPA in repair of oxidative DNA damage deduced from analysis of damage, repair and genotype in a human population study. Mutagenesis 21 (2006) 205–211.

    Article  CAS  PubMed  Google Scholar 

  26. Swift, M., Chase, C. Cancer in families with xeroderma pigmentosum. J. Natl. Cancer Inst. 62 (1979) 1415–1421.

    CAS  PubMed  Google Scholar 

  27. Kozak, M. Interpreting cDNA sequences: some insights from studies on translation. Mamm. Genome 7 (1996) 563–574.

    Article  CAS  PubMed  Google Scholar 

  28. Afshar-Khargan, V., Li, C.Q., Khoshnevis-Asl, M. and Lopez, J.A. Kozak sequence polymorphism of the glycoprotein (GP) Ibα gene is a major determinant of the plasma membrane levels of the platelet GP Ib-IX-V complex. Blood 94 (1999) 186–191.

    Google Scholar 

  29. Jacobson, E.M., Concepcion, E., Oashi, T. and Tomer Y. A Graves’ diseaseassociated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology 146 (2005) 2684–2691.

    Article  CAS  PubMed  Google Scholar 

  30. Layher, S.K. and Cleaver, J.E. Quantification of XPA gene expression levels in human and mouse cell lines by competitive RT-PCR. Mutat. Res. 383 (1997) 9–19.

    CAS  PubMed  Google Scholar 

  31. Cheng, L., Guan, Y., Li, L., Legerski, R.J., Einspahr, J., Bangert, J., Alberts, D.S. and Wie, Q. Expression in normal human tissues of five nucleotide excision repair genes measured simultaneously by multiplex reverse transcription-polymerase chain reaction. Cancer Epidemiol. Biomarkers Prev. 8 (1999) 801–807.

    CAS  PubMed  Google Scholar 

  32. Henke, W., Herdel, K., Jung, K., Schnorr, D. and Loening, S.A. Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res. 25 (1997) 3957–3958.

    Article  CAS  PubMed  Google Scholar 

  33. Krzesniak, M., Butkiewicz, D., Samojedny, A., Chorazy, M. and Rusin M. Polymorphisms in TDG and MGMT genes - epidemiological and functional study in lung cancer patients from Poland. Ann. Hum. Genet. 68 (2004) 300–312.

    Article  CAS  PubMed  Google Scholar 

  34. Stetefeld, J. and Ruegg, M.A. Structural and functional diversity generated by alternative mRNA splicing. Trends Biochem. Sci. 30 (2005) 515–521.

    Article  CAS  PubMed  Google Scholar 

  35. Emmert, S., Schneider, T.D., Khan, S.G. and Kraemer, K.H. The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res. 29 (2001) 1443–1452.

    Article  CAS  PubMed  Google Scholar 

  36. Khan, S.G., Muniz-Medina, V., Shahlavi, T., Baker, C.C., Inui, H., Ueda, T., Emmert, S., Schneider, T.D. and Kraemer, K.H. The human XPC DNA repair gene: arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function. Nucleic Acids Res. 30 (2002) 3624–3631.

    Article  CAS  PubMed  Google Scholar 

  37. Kang, D. and Hamasaki, N. Maintenance of mitochondrial DNA integrity: repair and degradation. Curr. Genet. 41 (2002) 311–322.

    Article  CAS  PubMed  Google Scholar 

  38. Yamaguchi, S., Shinmura, K., Saitoh, T., Takenoshita, S., Kuwano, H. and Yokota, J. A single nucleotide polymorphism at the splice donor site of the human MYH base excision repair genes results in reduced translation efficiency of its transcripts. Genes Cells 7 (2002) 461–474.

    Article  CAS  PubMed  Google Scholar 

  39. Inoki, T., Yamagami, S., Inoki, Y., Tsuru, T., Hamamoto, T., Kagawa, Y., Mori, T. and Endo, H. Human DDB2 splicing variants are dominant negative inhibitors of UV-damaged DNA repair. Biochem. Biophys. Res. Commun. 314 (2004) 1036–1043.

    Article  CAS  PubMed  Google Scholar 

  40. Tao, H., Shinmura, K., Hanaoka, T., Natsukawa, S., Shaura, K., Koizumi, Y., Kasuga, Y., Ozawa, T., Tsujinaka, T., Li, Z., Yamaguchi, S., Yokota, J., Sugimura, H. and Tsugane, S. A novel splice-site variant of the base excision repair gene MYH is associated with production of an aberrant mRNA transcript encoding a truncated MYH protein not localized in the nucleus. Carcinogenesis 25 (2004) 1859–1866.

    Article  CAS  PubMed  Google Scholar 

  41. Tanioka, M., Budiyant, A., Ueda, T., Nagano, T., Ichihashi, M., Miyachi, Y. and Nishigori, C. A novel XPA gene mutation and its functional analysis in a Japanese patient with xeroderma pigmentosum group A. J. Invest. Dermatol. 125 (2005) 244–246.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Rusin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butkiewicz, D., Krześniak, M., Vaitiekunaite, R. et al. A functional analysis of G23A polymorphism and the alternative splicing in the expression of the XPA gene. Cell Mol Biol Lett 15, 611–629 (2010). https://doi.org/10.2478/s11658-010-0032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0032-2

Key words