Skip to main content
  • Research Article
  • Published:

In vitro and in vivo matrix metalloproteinase expression after photodynamic therapy with a liposomal formulation of aminolevulinic acid and its methyl ester

Abstract

Photodynamic therapy (PDT) is a well-known method for the treatment of malignant tumors, and its principles have been well established over the past 30 years. This therapy involves the application of a chemical called a photosensitizer and its subsequent excitation with light at the appropriate wavelength and energy. Topical photodynamic therapy with aminolevulinic acid (5-ALA) is an alternative therapy for many malignant processes, including nonmelanoma skin cancers such as basal-cell carcinoma (BCC). Our novel approach for this study was to use a liposomal formulation of 5-ALA and its methyl ester (commercially available as metvix) both in vitro and in vivo, and to check whether the liposome-entrapped precursors of photosensitizers can induce the expression of metalloproteinases (MMPs) in animal tumor cells and in other tissues from tumor-bearing rats and in selected cell lines in vitro. We also checked whether the application of tissue inhibitors of matrix metalloproteinases (TIMPs) has any effect on MMPs in the above-mentioned experimental models, and if they can cause complete inhibition of MMP expression. Immunohistochemical studies revealed that after the PDT, the intensity of expression of MMPs in healthy animals was very low and seen in single cells only. After the PDT in tumor-bearing rats, MMP-3 was expressed in the tumor cells with the highest intensity of staining in the tissues directly adjacent to the tumors, while MMP-2 and -9 were not found. In the control groups, there was no observed expression of MMPs. In vitro studies showed that MMP-3 was expressed in MCF-7 cells after PDT, but MMP-9 was not observed and MMP-2 was only seen in single cases. Our studies confirmed that the application of an MMP-3 inhibitor may block an induction of MMP-3 expression which had previously been initiated by PDT. The preliminary data obtained from cancer patients revealed that new precursors are effective in terms of PDT, and that using MMP inhibitors should be considered as a potential enhancing factor in clinical PDT.

Abbreviations

5-ALA:

aminolevulinic acid

BCC:

basal cell carcinoma

CNV:

choroidal neo-vascularization

CPI:

coproporphyrin I

GM-CSF:

granulocyte-macrophage colony stimulating factor

HNSCC:

head and neck squamous cell carcinoma

IL-1:

interleukin-1

met-ALA:

methyl ester of aminolevulinic acid

MMPs:

matrix metalloproteinases

m-THPC:

meso-tetra(hydroxyphenyl)chlorine

PDT:

photodynamic therapy

PPIX:

protoporphyrin IX

ROS:

reactive oxygen species

TIMPs:

tissue inhibitors of matrix metalloproteinases

VEGF:

vascular endothelial growth factor

References

  1. Ackroyd, R., Kelty, C., Brown, N. and Reed, M. The history of photodetection and photodynamic therapy. Photochem. Photobiol. 74 (2001) 656–669.

    Article  CAS  PubMed  Google Scholar 

  2. Hauschild, A., Lischner, S., Lange-Asschenfeldt, B. and Egberts, F. Treatment of actinic cheilitis using photodynamic therapy with methyl aminolevulinate: report of three cases. Dermatol. Surg. 31 (2005) 1344–1347.

    Article  CAS  PubMed  Google Scholar 

  3. Ferraz, R.C., Ferreira, J., Menezes, P.F., Sibata, C.H., Silva, O.C. and Bagnato, V.S. Determination of threshold dose of photodynamic therapy to measure superficial necrosis. Photomed. Laser Surg. 27 (2009) 93–99.

    Article  CAS  PubMed  Google Scholar 

  4. Marcus, S.L. and McIntyre, W.R. Photodynamic therapy systems and applications. Expert Opin. Emerg. Drugs 7 (2002) 321–334.

    Article  CAS  PubMed  Google Scholar 

  5. Inoue, K., Karashima, T., Kamada, M., Shuin, T., Kurabayashi, A., Furihata, M., Fujita, H., Utsumi, K. and Sasaki, J. Regulation of 5-aminolevulinic acid-mediated protoporphyrin IX accumulation in human urothelial carcinomas. Pathobiology 76 (2009) 303–314.

    Article  CAS  PubMed  Google Scholar 

  6. Yslas, E.I., Prucca, C., Romanini, S., Durantini, E.N., Bertuzzi, M. and Rivarola, V. Biodistribution and phototherapeutic properties of Zinc (II) 2,9,16,23-tetrakis (methoxy) phthalocyanine in vivo. Photodiagnosis Photodyn. Ther. 6 (2009) 62–70.

    Article  CAS  PubMed  Google Scholar 

  7. Shen, S.C., Lee, W.R., Fang, Y.P., Hu, C.H. and Fang, J.Y. In vitro percutaneous absorption and in vivo protoporphyrin IX accumulation in skin and tumors after topical 5-aminolevulinic acid application with enhancement using an erbium:YAG laser. J. Pharm. Sci. 95 (2006) 929–938.

    Article  CAS  PubMed  Google Scholar 

  8. Symonowicz, K., Ziółkowski, P., Chmielewski, P., Latos-Grażyński, L., Rabczyński, J., Osiecka, B.J. and Milach, J. Tumor histopathology following new sensitizers: dithiaporphyrin and sulfoxaporphyrin-mediated photodynamic therapy. Anticancer Res. 19 (1999) 5385–5392.

    CAS  PubMed  Google Scholar 

  9. Gerritsen, M.J., Smits, T., Kleinpenning, M.M., van de Kerkhof, P.C. and van Erp, P.E. Pretreatment to enhance protoporphyrin IX accumulation in photodynamic therapy. Dermatology 218 (2009) 193–202.

    Article  CAS  PubMed  Google Scholar 

  10. Ziółkowski, P., Osiecka, B.J., Oremek, G., Siewiński, M., Symonowicz, K., Saleh, Y. and Bronowicz, A. Enhancement of photodynamic therapy by use of aminolevulinic acid/glycolic acid drug mixture. J. Exp. Ther. Oncol. 4 (2004) 121–129.

    PubMed  Google Scholar 

  11. Monk, B.J., Brewer, C., VanNostrand, K., Berns, M.W., McCullough, J.L., Tadir, Y. and Manetta, A. Photodynamic therapy using topically applied dihematoporphyrin ether in the treatment of cervical intraepithelial neoplasia. Gynecol. Oncol. 64 (1997) 70–75.

    Article  CAS  PubMed  Google Scholar 

  12. Oku, N. and Ishii, T. Antiangiogenic photodynamic therapy with targeted liposomes. Methods Enzymol. 465 (2009) 313–330.

    Article  CAS  PubMed  Google Scholar 

  13. Casas, A., Perotti, C., Saccoliti, M., Sacca, P., Fukuda, H. and Batlle, A.M. ALA and ALA hexyl ester in free and liposomal formulations for the photosensitization of tumor organ cultures. Br. J. Cancer 86 (2002) 837–842.

    Article  CAS  PubMed  Google Scholar 

  14. Casas, A. and Batlle, A.M. Aminolevulinic acid derivatives and liposome delivery as strategies for improving 5-aminolevulinic acid-mediated photodynamic therapy. Curr. Med. Chem. 13 (2006) 1157–1168.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta, S., Mishra, A.K., Muralidhar, K. and Jain, V. Improved targeting of photosensitizers by intratumoral administration of immunoconjugates. Technol. Cancer Res. Treat. 3 (2004) 295–301.

    CAS  PubMed  Google Scholar 

  16. Pogrebniak, H.W., Matthews, W., Black, C., Russo, A., Mitchell, J.B., Smith, P., Roth, J.A. and Pass, H.I. Targetted phototherapy with sensitizer-monoclonal antibody conjugate and light. Surg. Oncol. 2 (1993) 31–42.

    Article  CAS  PubMed  Google Scholar 

  17. de Leeuw, J., de Vijlder, H.C., Bjerring, P. and Neumann, H.A. Liposomes in dermatology today. J. Eur. Acad. Dermatol. Venereol. 23 (2009) 505–516.

    Article  PubMed  Google Scholar 

  18. Kachatkou, D., Sasnouski, S., Zorin, V., Zorina, T., D’Hallewin, M.A., Guillemin, F. and Bezdetnaya, L. Unusual photoinduced response of mTHPC liposomal formulation (Foslip). Photochem. Photobiol. 85 (2009) 719–724.

    Article  CAS  PubMed  Google Scholar 

  19. Sadzuka, Y., Iwasaki, F., Sugiyama, I., Horiuchi, K., Hirano, T., Ozawa, H., Kanayama, N. and Oku, N. Phototoxicity of coproporphyrin as a novel photodynamic therapy was enhanced by liposomalization. Toxicol. Lett. 182 (2008) 110–114.

    Article  CAS  PubMed  Google Scholar 

  20. Tapajós, E.C., Longo, J.P., Simioni, A.R., Lacava, Z.G., Santos, M.F., Morais, P.C., Tedesco, A.C. and Azevedo, R.B. In vitro photodynamic therapy on human oral keratinocytes using chloroaluminum-phthalocyanine. Oral Oncol. 44 (2008) 1073–1079.

    Article  PubMed  Google Scholar 

  21. Bombelli, C., Bordi, F., Ferro, S., Giansanti, L., Jori, G., Mancini, G., Mazzuca, C., Monti, D., Ricchelli, F., Sennato, S. and Venanzi, M. New cationic liposomes as vehicles of m-tetrahydroxyphenylchlorin in photodynamic therapy of infectious diseases. Mol. Pharm. 5 (2008) 672–679.

    Article  CAS  PubMed  Google Scholar 

  22. Fang, Y.P., Tsai, Y.H., Wu, P.C. and Huang, Y.B. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int. J. Pharm. 356 (2008) 144–152.

    Article  CAS  PubMed  Google Scholar 

  23. Tatar, O., Adam, A., Shinoda, K., Eckert, T., Scharioth, G.B., Klein, M., Yoeruek, E., Bartz-Schmidt, K.U. and Grisanti, S. Matrix metalloproteinases in human choroidal neovascular membranes excised following verteporfin photodynamic therapy. Br. J. Ophthalmol. 91 (2007) 1183–1189.

    Article  PubMed  Google Scholar 

  24. Gomer, C.J., Ferrario, A., Luna, M., Rucker, N. and Wong, S. Photodynamic therapy: combined modality approaches targeting the tumor microenvironment. Lasers Surg. Med. 38 (2006) 516–521.

    Article  PubMed  Google Scholar 

  25. Ferrario, A., Chantrain, C.F., von Tiehl, K., Buckley, S., Rucker, N., Shalinsky, D.R., Shimada, H., DeClerck, Y.A. and Gomer, C.J. The matrix metalloproteinase inhibitor prinomastat enhances photodynamic therapy responsiveness in a mouse tumor model. Cancer Res. 64 (2004) 2328–2332.

    Article  CAS  PubMed  Google Scholar 

  26. Tomokuni, K. and Ogata, M. Simple method for determination of urinary δ-aminolevulinic acid as an index of lead exposure. Clin. Chem. 18 (1972) 1534–1538.

    CAS  PubMed  Google Scholar 

  27. Tomokuni, K. and Ichiba, M. A simple method for colorimetric determination of urinary δ-aminolevulinic acid in workers exposed to lead. Sangyo Igaku 30 (1988) 52–53.

    CAS  PubMed  Google Scholar 

  28. Apalla, Z., Sotiriou, E., Chovarda, E., Lefaki, I., Devliotou-Panagiotidou, D. and Ioannides, D. Skin cancer: preventive photodynamic therapy in patients with face and scalp cancerization. A randomized placebo-controlled study. Br. J. Dermatol. 162 (2010) 171–175.

    Article  CAS  PubMed  Google Scholar 

  29. Almeida Issa, M.C., Pineiro-Maceira, J., Farias, R.E., Pureza, M., Raggio Luiz, R. and Manela-Azulay, M. Immunohistochemical expression of matrix metalloproteinases in photodamaged skin by photodynamic therapy. Br. J. Dermatol. 161 (2009) 647–653.

    Article  CAS  PubMed  Google Scholar 

  30. Caekelbergh, K., Nikkels, A.F., Leroy, B., Verhaeghe, E., Lamotte, M. and Vincent, R. Photodynamic therapy using methyl aminolevulinate in the management of primary superficial basal cell carcinoma: clinical and health economic outcomes. J. Drugs Dermatol. 8 (2009) 992–996.

    PubMed  Google Scholar 

  31. Ballut, S., Makky, A., Loock, B., Michel, J.P., Maillard, P. and Rosilio, V. New strategy for targeting of photosensitizers. Synthesis of glycodendrimeric phenylporphyrins, incorporation into a liposome membrane and interaction with a specific lectin. Chem. Commun. (Camb.) 8 (2009) 224–226.

    Article  Google Scholar 

  32. Simioni, A.R., Pelisson, M.M., Beltrame, M. Jr and Tedesco, A.C. Photophysical and photobiological studies of a silicon tribenzonaphthoporphyrazinato incorporated into liposomes for photodynamic therapy use. J. Nanosci. Nanotechnol. 8 (2008) 3208–3215.

    Article  CAS  PubMed  Google Scholar 

  33. D’Hallewin, M.A., Kochetkov, D., Viry-Babel, Y., Leroux, A., Werkmeister, E., Dumas, D., Grafe, S., Zorin, V., Guillemin, F. and Bezdetnaya, L. Photodynamic therapy with intratumoral administration of lipid-based mTHPC in a model of breast cancer recurrence. Lasers Surg. Med. 40 (2008) 543–549.

    Article  PubMed  Google Scholar 

  34. Svensson, J., Johansson, A., Grafe, S., Gitter, B., Trebst, T., Bendsoe, N., Andersson-Engels, S. and Svanberg, K. Tumor selectivity at short times following systemic administration of a liposomal temoporfin formulation in a murine tumor model. Photochem. Photobiol. 83 (2007) 1211–1219.

    Article  CAS  PubMed  Google Scholar 

  35. Bendsoe, N., Persson, L., Johansson, A., Axelsson, J., Svensson, J., Grafe, S., Trebst, T., Andersson-Engels, S. and Svanberg, S. Fluorescence monitoring of a topically applied liposomal temoporfin formulation and photodynamic therapy of nonpigmented skin malignancies. J. Environ. Pathol. Toxicol. Oncol. 26 (2007) 117–126.

    CAS  PubMed  Google Scholar 

  36. Sadzuka, Y., Tokutomi, K., Iwasaki, F., Sugiyama, I., Hirano, T., Konno, H., Oku, N. and Sonobe, T. The phototoxicity of photofrin was enhanced by PEGylated liposome in vitro. Cancer Lett. 241 (2006) 42–48.

    Article  CAS  PubMed  Google Scholar 

  37. Sharwani, A., Jerjes, W., Hopper, C., Lewis, M.P., El-Maaytah, M., Khalil, H.S., Macrobert, A.J., Upile, T. and Salih, V. Photodynamic therapy downregulates the invasion promoting factors in human oral cancer. Arch. Oral. Biol. 51 (2006) 1104–1111.

    Article  CAS  PubMed  Google Scholar 

  38. Ferrario, A. and Gomer, C.J. Targeting the 90kDa heat shock protein improves photodynamic therapy. Cancer Lett. 289 (2010) 188–194.

    Article  CAS  PubMed  Google Scholar 

  39. Karrer, S., Bosserhoff, A.K., Weiderer, P., Landthaler, M. and Szeimies, R.M. Keratinocyte-derived cytokines after photodynamic therapy and their paracrine induction of matrix metalloproteinases in fibroblasts. Br. J. Dermatol. 151 (2004) 776–783.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y., Gong, L.H., Zhang, H.Q., Du, Q., You, J.F., Tian, X.X. and Fang, W.G. Extracellular ATP enhances in vitro invasion of prostate cancer cells by activating Rho GTPase and upregulating MMPs expression. Cancer Lett. 2 (2010) [Epub ahead of print].

  41. Tang, C.H., Yamamoto, A., Lin, Y.T., Fong, Y.C. and Tan, T.W. Involvement of matrix metalloproteinase-3 in CCL5/CCR5 pathway of chondrosarcomas metastasis. Biochem. Pharmacol. 79 (2010) 209–217.

    Article  CAS  PubMed  Google Scholar 

  42. El Bradey, M., Cheng, L., Bartsch, D.U., Appelt, K., Rodanant, N., Bergeron-Lynn, G. and Freeman, W.R. Preventive versus treatment effect of AG3340, a potent matrix metalloproteinase inhibitor in a rat model of choroidal neovascularization. J. Ocul. Pharmacol. Ther. 20 (2004) 217–236.

    Article  PubMed  Google Scholar 

  43. Oku, N., Sasabe, E., Ueta, E., Yamamoto, T. and Osaki, T. Tight junction protein claudin-1 enhances the invasive activity of oral squamous cell carcinoma cells by promoting cleavage of laminin-5 gamma2 chain via matrix metalloproteinase (MMP)-2 and membrane-type MMP-1. Cancer Res. 66 (2006) 5251–5257.

    Article  CAS  PubMed  Google Scholar 

  44. Du, H.Y., Olivo, M., Mahendran, R., Huang, Q., Shen, H.M., Ong, C.N. and Bay, B.H. Hypericin photoactivation triggers down-regulation of matrix metalloproteinase-9 expression in well-differentiated human nasopharyngeal cancer cells. Cell. Mol. Life Sci. 64 (2007) 979–988.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Ziółkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osiecka, B., Jurczyszyn, K., Symonowicz, K. et al. In vitro and in vivo matrix metalloproteinase expression after photodynamic therapy with a liposomal formulation of aminolevulinic acid and its methyl ester. Cell Mol Biol Lett 15, 630–650 (2010). https://doi.org/10.2478/s11658-010-0033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0033-1

Key words