Skip to main content

The prediction of novel multiple lipid-binding regions in protein translocation motor proteins: A possible general feature

Abstract

Protein translocation is an important cellular process. SecA is an essential protein component in the Sec system, as it contains the molecular motor that facilitates protein translocation. In this study, a bioinformatics approach was applied in the search for possible lipid-binding helix regions in protein translocation motor proteins. Novel lipid-binding regions in Escherichia coli SecA were identified. Remarkably, multiple lipid-binding sites were also identified in other motor proteins such as BiP, which is involved in ER protein translocation. The prokaryotic signal recognition particle receptor FtsY, though not a motor protein, is in many ways related to SecA, and was therefore included in this study. The results demonstrate a possible general feature for motor proteins involved in protein translocation.

Abbreviations

DOPC:

1,2-dioleoyl-sn-glycero-3-phosphocholine

DOPG:

1,2-dioleoyl-sn-glycero-3-phosphoglycerol

ESR:

electron spin resonance

HSD:

helical scaffold domain

HWD:

helical wing domain

LBD:

lipid-binding domain

MID:

membrane interacting domain

NBF:

nucleotide-binding fold

PBD:

precursor-binding domain

PE:

phosphatidylethanolamine

References

  1. Arkowitz, R.A. and Bassilana, M. Protein translocation in Escherichia coli. Biochim. Biophys. Acta 1197 (1994) 311–343.

    PubMed  Google Scholar 

  2. Driessen, A.J.M. and Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77 (2008) 643–667.

    CAS  Article  PubMed  Google Scholar 

  3. de Kruijff, B., Breukink, E., Demel, R.A., van’ t Hoff, R., de Jong, H.H.J., Jordi, W., Keller, R.C.A., Killian, J.A., de Kroon, A.I.M.P., Kusters, R. and Pilon, M. Lipid involvement in protein translocation. In: Membrane Biogenesis and Protein Targeting, New Comprehensive Biochemistry, Vol. 22, (Neupert, W. & Lill, R. Eds.), Elsevier, Amsterdam, 1992, 85–100.

    Google Scholar 

  4. van Klompenburg, W. and de Kruijff, B. The role of anionic phospholipids in protein insertion and translocation in bacterial membranes. J. Membr. Biol. 162 (1998) 1–7.

    Article  PubMed  Google Scholar 

  5. de Vrije, T., de Swart, R.I., Dowhan, W. and de Kruijff, B. Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 334 (1988) 173–175.

    Article  PubMed  Google Scholar 

  6. Rietveld, A.G., Koorengevel, M.C. and de Kruijff, B. Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. EMBO J. 14 (1995) 5506–5513.

    CAS  PubMed  Google Scholar 

  7. Flower, A.M. The SecY translocation complex: convergence of genetics and structure. Trends Microbiol. 15 (2007) 203–210.

    CAS  Article  PubMed  Google Scholar 

  8. Ulbrandt, N.D., London, E.L. and Oliver, D.B. Deep penetration of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding. J. Biol. Chem. 267 (1992) 15184–15192.

    CAS  PubMed  Google Scholar 

  9. Breukink, E., Demel, R.A., de Korte-Kool, G. and de Kruijff, B. SecA insertion into phospholipids is stimulated by negatively charged lipids and inhibited by ATP: A monolayer study. Biochemistry 31 (1992) 1119–1124.

    CAS  Article  PubMed  Google Scholar 

  10. Schmidt, M.G., Rollo, E.E., Grodberg, J. and Oliver, D.B. Nucleotide sequence of the secA gene and secA(Ts) mutants preventing protein export in Escherichia coli. J. Bacteriol. 170 (1988) 3404–3414.

    CAS  PubMed  Google Scholar 

  11. Breukink, E., Keller, R.C.A. and de Kruijff, B. Nucleotide and negatively charged lipid-dependent vesicle aggregation caused by SecA. FEBS Lett. 331 (1993) 19–24.

    CAS  Article  PubMed  Google Scholar 

  12. Breukink, E., Nouwen, N., van Raalte, A., Mizushima, S., Tommassen, J. and de Kruijff, B. The C terminus of SecA is involved in both lipid binding and SecB binding. J. Biol. Chem. 270 (1995) 7902–7907.

    CAS  Article  PubMed  Google Scholar 

  13. Economou, A. and Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78 (1994) 835–843.

    CAS  Article  PubMed  Google Scholar 

  14. Keller, R.C.A., Snel, M.M.E., de Kruijff, B. and Marsh, D. SecA restricts in a nucleotide-dependent manner acyl chain mobility up to the center of a phospholipid bilayer. FEBS Lett. 358 (1995) 251–254.

    CAS  Article  PubMed  Google Scholar 

  15. Kim, Y.J., Rajapandi, T. and Oliver, D. SecA protein is exposed to the periplasmic surface of the E. Coli inner membrane in its active state. Cell 78 (1994) 845–853.

    CAS  Article  PubMed  Google Scholar 

  16. Ahn, T. and Kim, H. SecA of Escherichia coli traverses lipid bilayer of phospholipid vesicles. Biochem. Biophys. Res. Commun. 203 (1994) 326–330.

    CAS  Article  PubMed  Google Scholar 

  17. Benach, J., Chou, Y.-T., Fak, J.J., Itkin, A. Nicolae, D.D., Smith, P.C., Wittrock, G., Floyd, D.L., Golsaz, C.M., Gierasch, L.M. and Hunt J.F. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J. Biol. Chem. 278 (2003) 3628–3638.

    CAS  Article  PubMed  Google Scholar 

  18. Shin, J.-Y, Kim, M. and Ahn, T. Effect of signal peptide and adenylate on the oligomerization and membrane binding of soluble SecA. J. Biochem. Mol. Biol. 3 (2006) 319–328.

    Google Scholar 

  19. Gold, V.A.M., Robson, A., Clarke, A.R. and Collinson, I. Allosteric regulation of SecA. J. Biol. Chem. 282 (2007) 17424–17432.

    CAS  Article  PubMed  Google Scholar 

  20. Gautier, R., Douguet, D., Anthonny, B. and Drin, G. Heliquest: a webserver to screen sequences with specific α-helical properties. Bioinformatics 24 (2008) 2101–2102.

    CAS  Article  PubMed  Google Scholar 

  21. Geourjon, C. and Deleage, G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11 (1995) 681–684.

    CAS  PubMed  Google Scholar 

  22. Cooper, D.B., Smith, V.F., Crane, J.M., Roth, H.C., Lilly, A.A. and Randall, L.L. SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J. Mol. Biol. 382 (2008) 74–87.

    CAS  Article  PubMed  Google Scholar 

  23. Hu, H.-J., Holley, J., He, J., Harrison, R.W., Yang, H., Tai, P.C. and Pan, Y. To be or not to be: Predicting soluble SecAs as membrane proteins. IEEE Trans. NanoBioscience 6 (2007) 168–179.

    Article  PubMed  Google Scholar 

  24. Keller, R.C.A. Interactions between lipids and protein components of the prokaryotic secretion pathway. PhD thesis, University of Utrecht, The Netherlands, 1995.

    Google Scholar 

  25. Chen, X., Brown, T. and Tai, P.C. Identification and characterization of protease-resistant SecA fragments: secA has two membrane-integral forms. J. Bacteriol. 180 (1998) 527–537.

    CAS  PubMed  Google Scholar 

  26. Keller, R.C.A., Killian, J.A. and de Kruijff, B. Anionic phospholipids are essential for α-helix formation of the signal peptide of prePhoE upon interaction with phospholipid vesicles. Biochemistry 31 (1992) 1672–1677.

    CAS  Article  PubMed  Google Scholar 

  27. Jordi, W., de Kruijff, B. and Marsh, D. Specificity of the interaction of amino- and carboxy-terminal fragments of the mitochondrial precursor protein apocytochrome c with negatively charged phospholipids. A spinlabel electron spin resonance study. Biochemistry 28 (1989) 8998–9005.

    CAS  Article  PubMed  Google Scholar 

  28. Treutlein, H.R., Lemmon, M.A., Engelman, D.M. and Brunger, A.T. The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices. Biochemistry 31 (1992) 12726–12732.

    CAS  Article  PubMed  Google Scholar 

  29. Drin, G., Casella, J-F., Gautier, R., Boehmer, T., Schwartz, T.U. and Antonny, B. A general amphipathic α-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14 (2007) 138–146.

    CAS  Article  PubMed  Google Scholar 

  30. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305 (2001) 567–80.

    CAS  Article  PubMed  Google Scholar 

  31. Tomkiewicz, D., Nouwen, N. and Driessen, A.J.M. Pushing, pulling and trapping — Modes of protein supported protein translocation. FEBS Lett. 581 (2007) 2820–2828.

    CAS  Article  PubMed  Google Scholar 

  32. Dowhan, W. Molecular basis for membrane phospholipid diversity: Why are there so many phospholipids. Annu. Rev. Biochem. 66 (1997) 199–232.

    CAS  Article  PubMed  Google Scholar 

  33. Hovius, H., Lambrechts, H., Nicolay, K. and de Kruijff, B. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim. Biophys. Acta 1021 (1990) 217–226.

    CAS  Article  PubMed  Google Scholar 

  34. Ardail, D., Privat, J.-P., Egret-Charlier, M., Levrat, C., Lerme, F. and Louisot, P. Mitochondrial contact sites. J. Biol. Chem. 265 (1990) 18797–18802.

    CAS  PubMed  Google Scholar 

  35. Chapman, D.J., De-Felice, J. and Barber, J. D. Growth temperature effects on thylakoid membrane lipid and protein content of pea chloroplasts. Plant Physiol. 72 (1983) 225–228.

    CAS  Article  PubMed  Google Scholar 

  36. Sun, C., Rusch, S.L., Kim, J. and Kendall, D.A. Chloroplast SecA and Escherichia coli SecA have distinct lipid and signal peptide preferences. J. Bacteriol. 189 (2007) 1171–1175.

    CAS  Article  PubMed  Google Scholar 

  37. Yeung, T., Gilbert, G.E., Shi, J., Silvius, J. Kapus, A. and Grinstein, S. Membrane phosphatidylserine regulates surface charge and protein localization. Science 11 (2008) 210–213.

    Article  Google Scholar 

  38. Eichler, J. Brunner, J. and Wickner, W. The protease-protected 30 kDa domain of SecA is largely inaccessible to the membrane lipid phase. EMBO J. 16 (1997) 2188–2196.

    CAS  Article  PubMed  Google Scholar 

  39. van Voorst, F., van der Does, C., Brunner, J., Driessen, A. J. M. and de Kruijff, B. Translocase-bound SecA is largely shielded from the phospholipid acyl chains. Biochemistry 37 (1998) 12261–12268.

    Article  PubMed  Google Scholar 

  40. Fernández-Murray, J.P. and McMaster, C.R. Identification of novel phospholipid binding proteins in Saccharomyces cerevisiae. FEBS Lett. 580 (2006) 82–86.

    Article  PubMed  Google Scholar 

  41. Lill, R., Dowhan, W. and Wickner W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 26 (1990) 271–280.

    Article  Google Scholar 

  42. de Leeuw, E., te Kaat, K., Moser, C., Menestrina, G., Demel, R. and de Kruijff, B. Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J. 19 (2000) 531–541.

    Article  PubMed  Google Scholar 

  43. Cabelli, R.J., Dolan, K.M., Qian, L. and Oliver, D.B. Characterization of membrane-associated and soluble states of SecA from wild-type and SecA51 (TS) mutant strains of Escherichia. J. Biol. Chem. 266 (1991) 24420–24427.

    CAS  PubMed  Google Scholar 

  44. Luirink, J., ten Hagen-Jongman, C.M., van der Weijden, C.C., Oudega, B., High, S., Dobberstein, B. and Kusters, R. An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J. 13 (1994) 2289–2296.

    CAS  PubMed  Google Scholar 

  45. Weiche, B., Bürk, J., Angelini, S., Schiltz, E., Thumfart, J-O and Koch, H-G. A cleavable N-terminal membrane anchor is involved in membrane binding of the Escherichia coli SRP receptor. J. Mol. Biol. 28 (2008) 761–773.

    Article  Google Scholar 

  46. Braig, D., Bär, C., Thumfart, J-O. and Koch, H-G. Two cooperating helices constitute the lipid-binding domain of the bacterial SRP receptor. J. Mol. Biol. 390 (2009) 401–413.

    CAS  Article  PubMed  Google Scholar 

  47. Parlitz, R., Eitan, A., Stjepanovic, G., Bahari, L., Bange, G., Bibi, E. and Sinning, I. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 44 (2007) 32176–32321.

    Article  Google Scholar 

  48. Millman, J.S., Qi, H-Y., Vulcu, F., Bernstein, H.D. and Andrews, D.W. FtsY binds to the Escherichia coli inner membrane via interactions with phosphatidylethanolamine and membrane proteins. J. Biol. Chem. 276 (2001) 25982–25989.

    CAS  Article  PubMed  Google Scholar 

  49. Halskau, Ø, Muga, A. and Martínez, A. Linking new paradigms in protein chemistry to reversible membrane-protein interactions. Curr. Prot. Pept. Sci. 10 (2009) 339–359.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rob C. A. Keller.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Keller, R.C.A. The prediction of novel multiple lipid-binding regions in protein translocation motor proteins: A possible general feature. Cell Mol Biol Lett 16, 40–54 (2011). https://doi.org/10.2478/s11658-010-0036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0036-y

Key words

  • Lipid-binding regions
  • Motor proteins
  • Protein-lipid interactions
  • Protein translocation
  • SecA