Skip to main content

Regulation of thrombospondin-1 expression through AU-rich elements in the 3′UTR of the mRNA

Abstract

Thrombospondin-1 (TSP-1) is a matricellular protein that participates in numerous normal and pathological tissue processes and is rapidly modulated by different stimuli. The presence of 8 highly-conserved AU rich elements (AREs) within the 3′-untranslated region (3′UTR) of the TSP-1 mRNA suggests that post-transcriptional regulation is likely to represent one mechanism by which TSP-1 gene expression is regulated. We investigated the roles of these AREs, and proteins which bind to them, in the control of TSP-1 mRNA stability. The endogenous TSP-1 mRNA half-life is approximately 2.0 hours in HEK293 cells. Luciferase reporter mRNAs containing the TSP-1 3′UTR show a similar rate of decay, suggesting that the 3′UTR influences the decay rate. Site-directed mutagenesis of individual and adjacent AREs prolonged reporter mRNA halflife to between 2.2 and 4.4 hours. Mutation of all AREs increased mRNA half life to 8.8 hours, suggesting that all AREs have some effect, but that specific AREs may have key roles in stability regulation. A labeled RNA oligonucleotide derived from the most influential ARE was utilized to purify TSP-1 AREbinding proteins. The AU-binding protein AUF1 was shown to associate with this motif. These studies reveal that AREs in the 3′UTR control TSP-1 mRNA stability and that the RNA binding protein AUF1 participates in this control. These studies suggest that ARE-dependent control of TSP-1 mRNA stability may represent an important component in the control of TSP-1 gene expression.

Abbreviations

ARE:

adenine-uridine rich element

AUF1:

AU-binding factor-1

DRB:

5,6 dichloro-1-β-D-ribofuranosylbenzimidazole riboside

TSP-1:

thrombospondin-1

TTP:

Tris-tetraprolin

UTR:

untranslated region

References

  1. Margossian, S., Lawler, J. and Slayter, H. Physical characterization of platelet thrombospondin. J. Biol. Chem. 256 (1981) 7495–7500.

    CAS  PubMed  Google Scholar 

  2. Bonnefoy, A., Moura, R. and Hoylaerts, M.F. The evolving role of thrombospondin-1 in hemostasis and vascular biology. Cell. Mol. Life Sci. 65 (2008) 713–727.

    CAS  Article  PubMed  Google Scholar 

  3. Carlson, C.B., Lawler, J. and Mosher, D.F. Structures of thrombospondins. Cell. Mol. Life Sci. 65 (2008) 672–686.

    CAS  Article  PubMed  Google Scholar 

  4. Adams, J. and Lawler, J. The thrombospondins. Int. J. Biochem. Cell Biol. 6 (2004) 961–968.

    Article  Google Scholar 

  5. Kazerounian, S., Yee, K.O. and Lawler, J. Thrombospondins in cancer. Cell. Mol. Life Sci. 65 (2008) 700–712.

    CAS  Article  PubMed  Google Scholar 

  6. Bornstein, P. Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J. Cell Biol. 3 (1995) 503–506.

    Article  Google Scholar 

  7. Bornstein, P. Thrombospondins: structure and regulation of expression. FASEB J. 14 (1992) 3290–3299.

    Google Scholar 

  8. Iruela-Arispe, M.L., Liska, D.J., Sage, E.H. and Bornstein, P. Differential expression of thrombospondin 1, 2, and 3 during murine development. Dev. Dyn. 1 (1993) 40–56.

    Google Scholar 

  9. Petrik, J.J., Gentry, P.A., Feige, J. and LaMarre, J. Expression and localization of thrombospondin-1 and -2 and their cell-surface receptor, CD36, during rat follicular development and formation of the corpus luteum. Biol. Reprod. 5 (2002) 1522–1531.

    Article  Google Scholar 

  10. Agah, A., Kyriakides, T.R., Lawler, J. and Bornstein, P. The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am. J. Pathol. 3 (2002) 831–839.

    Google Scholar 

  11. Majack, R., Mildbrandt, J. and Dixit, V. Induction of thrombospondin messenger RNA levels occurs as an immediate primary response to plateletderived growth factor. J. Biol. Chem. 18 (1987) 8821–8825.

    Google Scholar 

  12. Janz, A., Sevignani, C., Kenyon, K., Ngo, C.V. and Thomas-Tikhonenko, A. Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res. 11 (2000) 2268–2275.

    Article  Google Scholar 

  13. Kang, J., Kim, S. and Hong, K. Induction of TSP1 gene expression by heat shock is mediated via an increase in mRNA stability. FEBS Lett. 2 (2006) 510–516.

    Article  Google Scholar 

  14. Okamoto, M., Ono, M., Uchiumi, T., Ueno, H., Kohno, K., Sugimachi, K. and Kuwano, M. Up-regulation of thrombospondin-1 gene by epidermal growth factor and transforming growth factor β in human cancer cells — transcriptional activation and messenger RNA stabilization. Biochim. Biophys. Acta 1574 (2002) 24–34.

    CAS  PubMed  Google Scholar 

  15. Bhattacharyya, S., Marinic, T.E., Krukovets, I., Hoppe, G. and Stenina, O.I. Cell type-specific post-transcriptional regulation of production of the potent antiangiogenic and proatherogenic protein thrombospondin-1 by high glucose. J. Biol. Chem. 9 (2008) 5699–5707.

    Google Scholar 

  16. Garneau, N.L., Wilusz, J., Wilusz, C.J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8 (2007) 113–126.

    CAS  Article  PubMed  Google Scholar 

  17. Blackshear, P.J. Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem. Soc. Trans. Pt 6 (2002) 945–952.

    Google Scholar 

  18. Gingerich, T.J., Feige, J.J. and LaMarre, J. AU-rich elements and the control of gene expression through regulated mRNA stability. Anim. Health Res. Rev. 1 (2004) 49–63.

    Google Scholar 

  19. Shyu, A.B., Wilkinson, M.F. and van Hoof, A. Messenger RNA regulation: to translate or to degrade. EMBO J. 3 (2008) 471–481.

    Article  Google Scholar 

  20. Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S. and Cerami, A. Identification of a common nucleotide sequence in the 3′-untranslated region of mrna molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. 83 (1986) 1670–1674.

    CAS  Article  PubMed  Google Scholar 

  21. Shaw, G. and Kamen, R. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 5 (1986) 659–667.

    Article  Google Scholar 

  22. Myer, V.E., Fan, X.C. and Steitz, J.A. Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay. EMBO J. 8 (1997) 2130–2139.

    Article  Google Scholar 

  23. Gouble, A., Grazide, S., Meggetto, F., Mercier, P., Delsol, G. and Morello, D. A new player in oncogenesis: AUF1/hnRNPD overexpression leads to tumorigenesis in transgenic mice. Cancer Res. 62 (2002) 1489–1495.

    CAS  PubMed  Google Scholar 

  24. Pullmann, R., Jr, Kim, H.H., Abdelmohsen, K., Lal, A., Martindale, J.L., Yang, X. and Gorospe, M. Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. Mol. Cell. Biol. 18 (2007) 6265–6278.

    Article  Google Scholar 

  25. Chen, C. and Shyu, A. Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol. Cell. Biol. 12 (1994) 8471–8482.

    Google Scholar 

  26. Shingu, T. and Bornstein, P. Characterization of the mouse thrombospondin 2 gene. Genomics 1 (1993) 78–84.

    Article  Google Scholar 

  27. Zubiaga, A., Belasco, J. and Greenberg, M. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 4 (1995) 2219–2230.

    Google Scholar 

  28. Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., Furth, E.E., Lee, W.M., Enders, G.H., Mendell, J.T. and Thomas-Tikhonenko, A. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet. 9 (2006) 1060–1065.

    Article  Google Scholar 

  29. Wagner, B.J., DeMaria, C.T., Sun, Y., Wilson, G.M. and Brewer, G. Structure and genomic organization of the human AUF1 gene: alternative pre-mrna splicing generates four protein isoforms. Genomics 2 (1998) 195–202.

    Article  Google Scholar 

  30. Sarkar, B., Xi, Q., He, C. and Schneider, R.J. Selective degradation of AUrich mRNAs promoted by the p37 AUF1 protein isoform. Mol. Cell. Biol. 18 (2003) 6685–6693.

    Article  Google Scholar 

  31. Al-Souhibani, N., Al-Ahmadi, W., Hesketh, J.E., Blackshear, P.J. and Khabar, K.S. The RNA-binding zinc-finger protein tristetraprolin regulates AU-rich mRNAs involved in breast cancer-related processes. Oncogene (2010) E-pub ahead of print: doi:10.1038/onc.2010.168.

  32. Cherradi, N., Lejczak, C., Desroches-Castan, A. and Feige, J.J. Antagonistic functions of tetradecanoyl phorbol acetate-inducible-sequence 11b and HuR in the hormonal regulation of vascular endothelial growth factor messenger ribonucleic acid stability by adrenocorticotropin. Mol. Endocrinol. 4 (2006) 916–930.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan Lamarre.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mcgray, A.J.R., Gingerich, T., Petrik, J.J. et al. Regulation of thrombospondin-1 expression through AU-rich elements in the 3′UTR of the mRNA. Cell Mol Biol Lett 16, 55–68 (2011). https://doi.org/10.2478/s11658-010-0037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0037-x

Key words

  • Thrombospondin-1
  • mRNA stability
  • Angiogenesis
  • AU-rich element
  • Post-transcriptional
  • Gene expression