Skip to main content

Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

Abstract

The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early, intermediate and late passages using a custom DNA microarray platform (NeuroStem 2.0 Chip). The microarray data was validated using RT-PCR and virtual SAGE analysis. Our comparative gene expression study identified a limited number of molecular targets potentially involved in the ability of human neonatal foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates.

Abbreviations

hESC:

human embryonic stem cells

hFC:

human fibroblast cells

hFF:

human neonatal foreskin fibroblasts

HPC:

hematopoietic progenitor cells

HSC:

hematopoietic stem cells

MEF:

mouse embryonic fibroblasts

MSC:

mesenchymal stem cells

NSC:

neural stem cells

PEDF:

pigment epithelium-derived factor

SAGE:

serial analysis of gene expression

References

  1. Evans, M.J. and Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292 (1981) 154–156.

    CAS  Article  PubMed  Google Scholar 

  2. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S. and Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science 282 (1998) 1145–1147.

    CAS  Article  PubMed  Google Scholar 

  3. Ludwig T.E., Levenstein M.E., Jones J.M., Berggren W.T., Mitchen E.R., Frane J.L., Crandall L.J., Daigh C.A., Conard K.R., Piekarczyk M.S., Llanas R.A. and Thomson J.A. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 24 (2006) 185–187.

    CAS  Article  PubMed  Google Scholar 

  4. Richards, M., Fong, C.Y., Chan, W.K., Wong, P.C. and Bongso, A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20 (2002) 933–936.

    CAS  Article  PubMed  Google Scholar 

  5. Unger, C., Felldin, U., Nordenskjöld, A., Dilber, M.S. and Hovatta, O. Derivation of human skin fibroblast lines for feeder cells of human embryonic stem cells. Curr. Protoc. Stem Cell Biol. (2008) Chapter 1: Unit 1C.7.

  6. Panula, S. and Reijo Pera, R.A. Preparation of human foreskin fibroblasts for human embryonic stem cell culture. Cold Spring Harb. Protoc. (2008) doi:10.1101/pdb.prot5043.

  7. Anisimov, S.V., Christophersen, N.S., Correia, A.S., Li J.Y. and Brundin, P. “NeuroStem Chip”: a novel highly specialized tool to study neural differentiation pathways in human stem cells. BMC Genomics 8 (2007) 46.

    Article  PubMed  CAS  Google Scholar 

  8. Wiese, C., Rolletschek, A., Kania, G., Navarrete-Santos, A., Anisimov, S.V., Steinfarz, B., Tarasov, K.V., Brugh, S.A., Zahanich, I., Rüschenschmidt, C., Beck, H., Blyszczuk, P., Czyz, J., Heubach, J.F., Ravens, U., Horstmann, O., St-Onge, L., Braun, T., Brüstle, O., Boheler K.R. and Wobus, A.M. Signals from embryonic fibroblasts induce adult intestinal epithelial cells to form nestin-positive cells with proliferation and multilineage differentiation capacity in vitro. Stem Cells 24 (2006) 2085–2097.

    CAS  Article  PubMed  Google Scholar 

  9. McElroy, S.L. and Reijo Pera, R.A. Preparation of mouse embryonic fibroblast feeder cells for human embryonic stem cell culture. Cold Spring Harb. Protoc. (2008) doi:10.1101/pdb.prot5041.

  10. Chin, A.C., Fong, W.J., Goh, L.T., Philp, R., Oh, S.K. and Choo, A.B. Identification of proteins from feeder conditioned medium that support human embryonic stem cells. J. Biotechnol. 130 (2007) 320–328.

    CAS  Article  PubMed  Google Scholar 

  11. Montes, R., Ligero, G., Sanchez, L., Catalina, P., de la Cueva, T., Nieto, A., Melen, G.J., Rubio, R., García-Castro, J., Bueno, C., Menendez, P. Feederfree maintenance of hESCs in mesenchymal stem cell-conditioned media: distinct requirements for TGF-beta and IGF-II. Cell Res. 19 (2009) 698–709.

    CAS  Article  PubMed  Google Scholar 

  12. Ramirez-Castillejo, C., Sanchez-Sanchez, F., Andreu-Agullo, C., Ferron, S.R., Aroca-Aguilar, J.D., Sanchez, P., Mira, H., Escribano, J. and Farinas, I. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci. 9 (2006) 331–339.

    CAS  Article  PubMed  Google Scholar 

  13. Coljee, V.W., Rotenberg, M.O., Tresini, M., Francis, M.K., Cristofalo, V.J. and Sell, C. Regulation of EPC-1/PEDF in normal human fibroblasts is posttranscriptional. J. Cell. Biochem. 79 (2000) 442–452.

    CAS  Article  PubMed  Google Scholar 

  14. Kojima, T., Nakahama, K., Yamamoto, K., Uematsu, H. and Morita, I. Ageand cell cycle-dependent changes in EPC-1/PEDF promoter activity in human diploid fibroblast-like (HDF) cells. Mol. Cell. Biochem. 293 (2006) 63–69.

    CAS  Article  PubMed  Google Scholar 

  15. Pignolo, R.J., Rotenberg, M.O. and Cristofalo, V.J. Analysis of EPC-1 growth state-dependent expression, specificity, and conservation of related sequences. J. Cell. Physiol. 162 (1995) 110–118.

    CAS  Article  PubMed  Google Scholar 

  16. Gonzalez, R., Jennings, L.L., Knuth, M., Orth, A.P., Klock, H.E., Ou, W., Feuerhelm, J., Hull, M.V., Koesema, E., Wang, Y., Zhang, J., Wu, C., Cho, C.Y., Su, A.I., Batalov, S., Chen, H., Johnson, K., Laffitte, B., Nguyen, D.G., Snyder, E.Y., Schultz, P.G., Harris, J.L., Lesley, S.A. Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc. Natl. Acad. Sci. USA 107 (2010) 3552–3557.

    CAS  Article  PubMed  Google Scholar 

  17. Attoub, S., Rivat, C., Rodrigues, S., Van Bocxlaer, S., Bedin, M., Bruyneel, E., Louvet, C., Kornprobst, M., Andre, T., Mareel, M., Mester, J. and Gespach, C. The c-kit tyrosine kinase inhibitor STI571 for colorectal cancer therapy. Cancer Res. 62 (2002) 4879–4883.

    CAS  PubMed  Google Scholar 

  18. Ronnstrand, L. Signal transduction via the stem cell factor receptor/c-Kit. Cell. Mol. Life Sci. 61 (2004) 2535–2548.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrik Brundin.

Additional information

These authors contributed equally to this study

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anisimov, S.V., Christophersen, N.S., Correia, A.S. et al. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells. Cell Mol Biol Lett 16, 79–88 (2011). https://doi.org/10.2478/s11658-010-0039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0039-8

Key words

  • Human embryonic stem cells
  • Feeder cells
  • DNA microarray