Skip to main content

Vertebrate melanophores as potential model for drug discovery and development: A review

Abstract

Drug discovery in skin pharmacotherapy is an enormous, continually expanding field. Researchers are developing novel and sensitive pharmaceutical products and drugs that target specific receptors to elicit concerted and appropriate responses. The pigment-bearing cells called melanophores have a significant contribution to make in this field. Melanophores, which contain the dark brown or black pigment melanin, constitute an important class of chromatophores. They are highly specialized in the bidirectional and coordinated translocation of pigment granules when given an appropriate stimulus. The pigment granules can be stimulated to undergo rapid dispersion throughout the melanophores, making the cell appear dark, or to aggregate at the center, making the cell appear light. The major signals involved in pigment transport within the melanophores are dependent on a special class of cell surface receptors called G-protein-coupled receptors (GPCRs). Many of these receptors of adrenaline, acetylcholine, histamine, serotonin, endothelin and melatonin have been found on melanophores. They are believed to have clinical relevance to skin-related ailments and therefore have become targets for high throughput screening projects. The selective screening of these receptors requires the recognition of particular ligands, agonists and antagonists and the characterization of their effects on pigment motility within the cells. The mechanism of skin pigmentation is incredibly intricate, but it would be a considerable step forward to unravel its underlying physiological mechanism. This would provide an experimental basis for new pharmacotherapies for dermatological anomalies. The discernible stimuli that can trigger a variety of intracellular signals affecting pigment granule movement primarily include neurotransmitters and hormones. This review focuses on the role of the hormone and neurotransmitter signals involved in pigment movement in terms of the pharmacology of the specific receptors.

Abbreviations

ACh:

Acetylcholine

AChE:

acetylcholinesterase

GABA:

gamma aminobutyric acid

5HT:

5 hydroxy tryptamine

mAchR:

muscarinic acetylcholine receptor

MCR:

melanocortin receptor

NE:

nor-epinephrine

POMC:

proopiomelanocortin

References

  1. Rawles, M.E. Origin of melanophores and their role in the color patterns in vertebrates. Physiol. Rev. 28 (1948) 383–408.

    CAS  PubMed  Google Scholar 

  2. Bagnara, J.T., Bareiter, H. J., Matoltsy, A.G. and Richards, K.S. Biology of the integument vertebrates. Berlin: Springer-Verlag. 2 (1986) 136–149.

    Google Scholar 

  3. Slominski, A., Desmond, J.T., Shibahara, S. and Wortman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84 (2004) 1155–1228.

    CAS  PubMed  Article  Google Scholar 

  4. Slominski, A., Wortsman, J., Plonka, P.M., Schallreuter, K.U., Paus, R. and Tobin, D.J. Hair follicle pigmentation. J. Invest. Dermatol. 124 (2005) 13–21.

    CAS  PubMed  Article  Google Scholar 

  5. Slominski, A. and Paus, R. Melanogenesis is coupled bto murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J. Invest. Dermatol. 101 (1993) 90S–97S.

    CAS  PubMed  Article  Google Scholar 

  6. Frisch, V.K., Beitrage zur Physiologic der Pigmentsellen in der Fischhaut. Pflugers Arch. Gesante Physiol. Menschen Tiere 138 (1911) 319–387.

    Article  Google Scholar 

  7. Parker, G.H. Animal colour changes and their neurohumors. Cambridge Univ. Press, Cambridge, U.K., 1948.

    Google Scholar 

  8. Pye, J.D. Nervous control of chromatophores in teleost fishes. I. Electrical stimulation in mimmow, Phoxinus phoxinus. J. Exp. Biol. 41 (1964a) 525–534.

    CAS  Google Scholar 

  9. Fujii, R. Cytophysiology of fish chromatophores. Int. Rev. Cytol. 143 (1993a) 191–255.

    CAS  Article  Google Scholar 

  10. David, M.J. and Laties, A.M. Direct innervations of teleost melanophore. Anat. Rec. 162 (2004) 501–504.

    Google Scholar 

  11. Pouchet, G. Color changes in crustaceans and fishes. J. Anat. Physiol. 12 (1876) 1–90, 113–116.

    Google Scholar 

  12. Brücke, E. Untersuchungen uber den Farbenwechsel des afrikanischen Chamaleons. Denschr. Akad. Wiss. Wien, math-nat. Cl. 4 (1852) 179–210.

    Google Scholar 

  13. Bagnara, J.T. and Hadley, M.E. Chromatophores and color changes. Englewood Cliffs, N.J. Prentice-Hall, 1973.

    Google Scholar 

  14. Gillbro, J.M, Marles, L.K., Hibberts, N.A. and Schallreuter, K.U. Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J. Invest. Dermatol. 123 (2004) 346–353.

    CAS  PubMed  Article  Google Scholar 

  15. Fujii, R. and Miyashita, Y. Receptor mechanisms in fish chromatophores-V. MSH disperses melanosomes in both dermal and epidermal melanophores of a catfish (Parasilurus asotus). Comp. Biochem. Physiol. Part C: Comp. Pharmacol. 71 (1981) 1–6.

    Article  Google Scholar 

  16. Vaudry, H., Chartrel. N., Desrues, L., Galas, L., Kikuyama, S., Mor, A., Nicolas, P. and Tonan, M.C. Pituitary-skin connection in amphibians: reciprocal regulation of melanotrope cells and dermal melanocytes. Ann. N. Y. Acad. Sci. 885 (1999) 41–56.

    CAS  PubMed  Article  Google Scholar 

  17. Slominski, A., Wortsman, J., Kohn, L., Ain, K.B., Venkataraman, G.M., Pisarchik, A., Chung, J.H., Giuliani, C., Thornton, M., Slugocki, G. and Tobin, D.J. Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin, J. Invest. Dermatol. 119 (2002) 1449–1455.

    CAS  PubMed  Article  Google Scholar 

  18. Slominski, A. and Wortsman, J. Neuroendocrinology of the skin. Endocrine Rev. 21 (2000) 457–487.

    CAS  Article  Google Scholar 

  19. Matsunaga, T.O., Hruby, V.J., Lebl, M., Castrucci, A.M. and Hadley, M.E. Melanin concentrating hormone (MCH): structure-function aspects of its melanocyte stimulating hormone-like (MSH-like) activity. Peptides 10 (1989) 773–778.

    CAS  PubMed  Article  Google Scholar 

  20. Hogben, L.T. and Winton, LXIII. Studies on the pituitary I. The melanophore stimulant in posterior lobe extracts. Proc. Roy. Soc. B. 93 (1924) 318.

    Article  Google Scholar 

  21. Slominski, A., Wortsman, J., Luger, T., Paus, R. and Soloman, S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev. 80 (2000) 979–1020.

    CAS  PubMed  Google Scholar 

  22. Fujii, R. and Novales, R. Cellular aspects of the control of physiological color changes in fishes. Integr. Comp. Biol. 9 (1969) 453–463.

    CAS  Article  Google Scholar 

  23. Novales, R.R. Cellular aspects of hormonally controlled translocation within chromatophores of poikilothermic vertebrates. Soc. Integr. Comp. Biol. 23 (1983) 559–568.

    CAS  Article  Google Scholar 

  24. Fuiji, R. and Oshima, N. Factors influencing motile activities of fish melanophores. Adv. Comp. Env. Physiol. 20 (1994) 1–52.

    Google Scholar 

  25. Fujii, R. The regulation of mobile activity in fish chromatophores. Pigment Cell Res. 13 (2000) 300–319.

    CAS  PubMed  Article  Google Scholar 

  26. Fujii, R. Chromatophores and pigments in fish physiology. (Hoar, W.H. and Randall, D.J. Eds) Vol. III. Academic Press, N.Y. 1969, 307–353.

    Google Scholar 

  27. Slominski, A., Paus, R. and Schadendorf, D. Melanocytes as “sensory” and regulatory cells in the epidermis. J. Theor. Biol. 164 (1993) 103–120.

    CAS  PubMed  Article  Google Scholar 

  28. Slominski, A. Neuroendocrine activity of the melanocyte. Exp. Dermatol. 18 (2009) 760–763.

    PubMed  Article  Google Scholar 

  29. Slominski, A., Wortsman, J., Paus, R., Elias, P.M., Tobin, D. and Feingold, K. Skin as an endocrine organ: implications for its function. Drug Dis. Today: Dis. Mech. 5 (2008) e137–e144.

    Article  Google Scholar 

  30. Spaeth, R.A. and Barbour, H.G. Responses of fish melanophores to sympathetic and parasympathetic stimulates and depressants. J. Pharmacol. Exp. Ther. 9 (1917) 356–357.

    Google Scholar 

  31. Fujii, R. and Miyashita, Y. Receptor mechanism in fish chromatophores I. Alpha nature of adrenoceptors mediating mechanism aggregation in guppy melanophores. Comp. Biochem. 5IC (1975) 171–178.

    Article  Google Scholar 

  32. Breder, C.M. Jr. and Rasquin, P. Further notes on pigmentary behavior of Chaetodipterus in reference to background and water transparency. Zoologica 40 (1955) 85–90.

    Google Scholar 

  33. Enami, M. Melanophore concentrating hormone (MCH) of possible hypothalamic origin in the catfish, Parasilurus. Science 121 (1955) 36–37.

    CAS  PubMed  Article  Google Scholar 

  34. Rasquin, P. Studies on the control of pigment cells and light reactions in recent teleost fishes. Bull. Am. Mus. Nat. Hist. 115 (1958) 1–68.

    Google Scholar 

  35. Watanabe, M., Kobayashi, and Iwata, K.S. The action of adrenaline on melanophores of Oryzias, with special reference to its pigment dispersion action. Biol. J. Okayama Uni. 8 (1962b) 95–102.

    CAS  Google Scholar 

  36. Umrath, K. Uber den physiologischen und den morphologischen Farbwechsel des Bitterlings, Rhodeus amarus. Z. Vgl. Physiol. 40 (1957) 321–328.

    CAS  Article  Google Scholar 

  37. Fujii, R. Demonstration of the adrenergic nature of transmission at the junction between melanophore-concentrating nerve and melanophore in bony fish. J. Fac. Sci. Univ. Tokyo, Sect. IV, 9 (1961) 171–196.

    Google Scholar 

  38. Fange, R. Pharmacology of poikilothermic vertebrates. Pharmacol. Rev. 14 (1962) 281–316.

    CAS  PubMed  Google Scholar 

  39. Scheline, R.R. Adrenergic mechanisms in fish: Chromatophore pigment concentration in the cuckoo wrasse, Labrus ossifagus L. Comp. Biochem. Physiol. 16 (1963) 215–27.

    CAS  PubMed  Google Scholar 

  40. Ali, S.A. Physiology and pharmacology of melanophores of a teleost fish, Channa punctatus. Ph. D Thesis, Bhopal University, Bhopal, 1983.

    Google Scholar 

  41. Martensson, L.G.E, Warmlander, S. and Hildebrand, C. Nor-adrenaline induced pigment aggregation response of melanophores in normal, denervated and reinnervated cichlid skin. Neurosci. Lett. 275 (1999) 113–116.

    CAS  PubMed  Article  Google Scholar 

  42. Aspengren, S., Skold, S.K., Quiroga, G., Martensson, L. and Wallin, M. Noradrenaline and melatonin-mediated regulation of pigment aggregation in fish melanophores. Pigment Cell Res. 16 (2003) 59–64.

    CAS  PubMed  Article  Google Scholar 

  43. Reed, B. and Finnen, B. Adrenergic innervations of melanophores in teleost fish in pigmentation: Its genesis and biologic control (Riley, V. Ed). Appleton, N.Y publisher, 1972, 285–294.

    Google Scholar 

  44. Holmgren, S. and Nilsson, S. Neuropharmacology of adrenergic neurons in teleost fish. Comp. Biochem. Physiol. C. 72 (1982) 289–302.

    CAS  PubMed  Article  Google Scholar 

  45. Judy, L., Morris, I. and Gibbins, L. Autonomic Innervation of the Skin 1997.

  46. Ahlquist, R.P. A study of adrenotropic receptors. Am. J. Physiol. 153 (1948) 586–600.

    CAS  PubMed  Google Scholar 

  47. Langer, S.Z. Presynaptic regulation of catecholamine release. Biochem. Pharmacol. 23 (1974) 1793–1800.

    CAS  PubMed  Article  Google Scholar 

  48. Lands, A.M., Luduena, F.P. and Buggo, H.J. Differentiation of receptors responsive to isoproterenol. Life Sci. 6 (1967) 2241.

    CAS  PubMed  Article  Google Scholar 

  49. Iga, T. Action of catecholamines on the melanophores in the teleost fish Oryzias latipes. Zoolog. Mag. 77 (1968) 19–26.

    CAS  Google Scholar 

  50. Burton, D. Spinal pigmentomotor tract of the minnow (Phoxinus phoxinus L.) Nature 201 (1964) 1149.

    CAS  PubMed  Article  Google Scholar 

  51. Andersson, R.G.G., Karlsson, J.O. and Grundstrom, M.N. Adrenergic nerves and the alpha 2 adrenoceptor system regulating melanosome aggregation within fish melanophores. Acta Physiol. Scand. 121 (1984) 173–179.

    CAS  PubMed  Article  Google Scholar 

  52. Morishita, F. Responses of the melanophores of medaka, Oryzias latipes, to adrenergic drugs: Evidence for involvement of alpha 2 adrenergic receptors mediating melanosome aggregation. Comp. Biochem. Physiol. Part C: Comp. Pharm. 88 (1987) 69–74.

    CAS  Article  Google Scholar 

  53. Iga, T., Takabatake I. and Watanabe, S. Nervous regulation of motile iridophores of a freshwater goby, Odontobutis obscura. Comp. Biochem. Physiol. 88 (1987) 319–324.

    Article  Google Scholar 

  54. Fuji, R. and Miyashita, Y. Responses of guppy melanophores to 5-hydroxy tryptamin. J. Pre-Med. 14 (1973) 34–44.

    Google Scholar 

  55. Abbott, F.S. The effects of certain and biogenic substances on the melanophores of Fundulus heteroclitus. L. Can. J. Zool. 46 (1968) 1149–1161.

    CAS  PubMed  Article  Google Scholar 

  56. Acharya, L.S.K. and Ovais, M. α1 and β2 adrenoceptors mediated aggregatory responses in vitro in Oreochromis mossambica (Peters) melanophores. Ind. J. Exp. Biol. 45 (2007) 984–991.

    CAS  Google Scholar 

  57. Amiri, M.H. Post synaptic alpha 2 adrenoceptors mediate melanophores aggregation in melanophores of white spotted rabbitfish (Siganis canaliculatus). Pak J. Biol. Sci. 12 (2009) 1–10.

    CAS  PubMed  Article  Google Scholar 

  58. Burton, D. and Vokey, J.E. alpha 1 and alpha 2 adrenoceptor mediation in melanosome aggregation in cryptic patterning of Pleuronectes americanus. Comp. Biochem. Physiol. Part A: Mol. Physiol. 125 (2000) 359–365.

    CAS  Article  Google Scholar 

  59. Fujii, R. and Miyashita Y. Beta adrenoceptors, cyclic-AMP and melanosomes dispersion in guppy melanophores. Pigment Cell 3 (Riley, V. Ed.), 1975, 336–344.

  60. Fujii, R., Oshima, N. and Miyashita, Y. Receptor mechanisms in fish chromatophores — VIII. Mediated by beta adrenoceptors, catecholamines always act to disperse pigment in siluroid melanophores. Comp. Biochem. Physiol. C. 81 (1985) 1–6.

    CAS  PubMed  Google Scholar 

  61. Komatsu, K. and Yamada, K. Autoradiographic visualization of beta adrenergic receptors in fish melanophores. J. Exp. Zoolog. 223 (1995) 185–188.

    Article  Google Scholar 

  62. Katayama, H., Morishita, F., Matsushima, O. and Fujimoto, M. Beta-adrenergic receptor subtypes in melanophotres of marine gobies Tridentiger trigonocephalus and Chasmichthys gulosus. Pigment Cell Res. 12 (1999) 206–217.

    CAS  PubMed  Article  Google Scholar 

  63. Morishita, F., Katayama, H. and Yamada, K. Subtypes of beta adrenergic receptors mediating pigment dispersion in chromatophores of medaka, Oryzias latipes. Comp. Biochem. Physiol. C 81 (1985) 279–285.

    CAS  PubMed  Article  Google Scholar 

  64. Kasukawa, H. and Fujii, R. Receptor mechanism in fish chromatophores — VII. Muscarinic cholinoceptors and alpha adrenoceptors both mediating pigment aggregation, strangely co exist in Corydoras melanophores. Comp. Biochem. Physiol. C. 80 (1985) 211–215.

    CAS  PubMed  Article  Google Scholar 

  65. Wright, M.R. and Lerner, A.B. On the movement of pigment granules in frog melanocytes. Endocrinology 66 (1960) 599–609.

    CAS  PubMed  Article  Google Scholar 

  66. Burgers, A.C. J., Boschman, Th. A. C. and Van de Kamer, J.C. Excitement darkening and the effects of adrenaline on the melanophores of Xenopus laevis. Acta Endocrinol. 4 (1953) 72–82.

    Google Scholar 

  67. Goldman, J.M. and Hadley, M. E. The beta adrenergic receptor and cyclic 3′,5′adenosine monophosphate: Possible roles in the regulation of melanophores responses of spadefoot toad Scaphiopus couchi. Gen. Comp. Endocrinol. 13 (1969) 151–163.

    CAS  PubMed  Article  Google Scholar 

  68. Lerner, A.B., Shizume, K. and Bunting, I. The mechanism of endocrine control of melanin pigmentation. J. Clin. Endocrinol. Metab. 14 (1954) 1463–1490.

    CAS  PubMed  Article  Google Scholar 

  69. Novales, R.R. and Novales, B.J. The effects of osmotic pressure and calcium deficiency on the responses of tissue cultured melanophores to melanocyte stimulating hormone. Gen. Comp. Endocrinol. 5 (1965) 568–576.

    CAS  PubMed  Article  Google Scholar 

  70. Graham, J.D.P. The response to catecholamines of melanophores of Xenopus laevis J. Physiol. 158 (1961) 5–6.

    Google Scholar 

  71. Novales, R.R. and Davis, W.J. Cellular aspects of the control of physiological colour changes in amphibians. Am. Zool. 9 (1969) 479–488.

    CAS  PubMed  Google Scholar 

  72. Ferroni, E.N. and Castrucci, A.M. A sensitive in vitro bioassay for melanotropic peptides. Braz. J. Biol. Res. 20 (1987) 213–220.

    CAS  Google Scholar 

  73. Greenberg, N. and Crews, D. Endocrine and behavioral responses to aggression and social dominance in the green anole lizard, Anolis carolinensis. Gen. Compar. Endocrinol. 77 (1990) 1–10.

    Article  Google Scholar 

  74. Kleinholz, L.H. Studies in reptilian color change III. Control of light phase and behavior of isolated skin. J. Exp. Zoolog. 15 (1938b) 492–499.

    Google Scholar 

  75. Kleinholz, L.H. Studies in reptilian color change II. The pituitary and adrenal glands in the regulation of the melanophores of Anolis carolinensis. J. Exp. Zoolog. 15 (1938a) 474–491.

    Google Scholar 

  76. Jenssen, T.A., Greenberg, N. and Hovde, K.A. Behavioral profile of freeranging male Anolis carolinensis across breeding and post-breeding seasons. Herpetological Monographs 9 (1995) 41–62.

    Article  Google Scholar 

  77. Goldman, J.M. and Hadley, M.E. In vitro demonstration of adrenergic receptors controlling melanophore responses of the lizard, Anolis carolinensis. J. Pharmacol. Exp. Ther. 166 (1970) 1–7.

    Google Scholar 

  78. Ovais, M., and Ali, S.A. Effect of autonomic drugs on the isolated melanophores of wall lizard. Hemidactylus flaviviridis. Curr. Sci. 5 (1984) 303–306.

    Google Scholar 

  79. Gordon, P.R. and Gilchrest, B.A. Human melanogenesis is stimulated by diacylglycerol. J. Invest. Dermatol. 93 (1989) 700–702.

    CAS  PubMed  Article  Google Scholar 

  80. Park, H.Y., Lee, J., Gonzalez, S., Middelkamp-Hup, M.A., Kapasi, S. and Peterson, S. Topical application of a protein kinase C inhibitor reduces skin and hair pigmentation. J. Invest. Dermatol. 122 (2004) 159–166.

    CAS  PubMed  Article  Google Scholar 

  81. Schallreuter, K.U. and Wood, J.M. The importance of L-phenylalanine transport and its autocrine turnover to L-tyrosine for melanogenesis in human epidermal melanocytes. Biochem. Biophys. Res. Commun. 262 (1999) 423–428.

    CAS  PubMed  Article  Google Scholar 

  82. Schallreuter, K.U., Korner, C., Pittelkow, M.R., Swanson, N. and Gardner, M.L.G. The induction of the α-1 adrenoceptor signal transduction system on human melanocytes. Exp. Dermatol. 5 (1996) 20–23.

    CAS  PubMed  Article  Google Scholar 

  83. Schallreuter, K.U. Epidermal adrenergic signal transduction as part of the neuronal network in the human epidermis. J. Investig. Dermatol. Symp. Proc. 1 (1997) 37–40.

    Google Scholar 

  84. Role, L.W. and Berg, D.K. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16 (1996) 1077–1085.

    CAS  PubMed  Article  Google Scholar 

  85. Robertson, O.H. Factors influencing the state of dispersion of the dermal melanophores in Rainbow trout. Univ. of Chicago Press. Physiol. Zool. 24 (1951) 309–323.

    Google Scholar 

  86. Reidinger, L. and Umrath K. Die parasympathetikolytische and parasympathikomimethieche wirking des Atropins auf die chromatophoren. Z. Vgl. Physiol. 34 (1952) 373–378.

    Google Scholar 

  87. Ando, S. Note on the type of the mechanism of the colour change in the medaka, Oryzias latipes. Annot. Zool. Jpn. 33 (1960) 33–36.

    Google Scholar 

  88. Green, L. Mechanism of movement of granules in melanocytes of Fundulus heteroclitus. Proc. Nat. Acad. Sci. USA 59 (1968) 1179–1189.

    CAS  PubMed  Article  Google Scholar 

  89. Smith, D.C. and Smith, M.T. Observations on the melanophores of Scorpaena ustulata. Biol. Bull. Woods Hole 67 (1934) 45–58.

    CAS  Article  Google Scholar 

  90. Parker, G.H. Color change in echinoderms. Proc. Nat. Acad. Sci. USA 17 (1931) 594–596.

    CAS  PubMed  Article  Google Scholar 

  91. Scott, G.T. Physiology and pharmacology of color change in the sand flounder Scopthalamus aquosus. Limnol. Oceanogr. 10 (1965) 230–246.

    Google Scholar 

  92. Castrucci, A.M.L. Chromatophores of the teleost Tilapia melanopleura II. The effects of chemical mediators, microtubule-disrupting drugs and ouabain. Comp. Biochem. Physiol. Part A: Physiol. 50 (1973) 457–462.

    Article  Google Scholar 

  93. Healy, E.G. and Ross, D.M. The effects of drugs on the background color response of the minnow, Phoxinus phoxinus L. Comp. Biochem. Physiol. 19 (1966) 545–580.

    Article  Google Scholar 

  94. Fujii, R. and Miyashita, Y. Receptor mechanism in fish melanophores-III neutrally controlled melanosome aggregation in a siluroid (Palasilurus asotus) is strangely mediated by cholinoceptors. Comp. Biol. Physiol. 55C (1976) 43–49.

    Google Scholar 

  95. Fujii, R., Miyashita, Y. and Fujii, Y. Muscarinic cholinoceptors mediate neurally evoked pigment aggregation in glass catfish melanophores. J. Neural. Transm. 54 (1982) 29–39.

    CAS  PubMed  Article  Google Scholar 

  96. Hayashi, H. and Fujii, R. Muscarinic cholinoceptors that mediate pigment aggregation are present in the melanophores of cyprinids (Zacco spp.). Pigment Cell Res. 6 (1993) 37–44.

    CAS  PubMed  Article  Google Scholar 

  97. Ovais, M. and Gorakh, A.K. Adrenergic and cholinergic receptors in the isolated scale melanophores of a teleostean fish Cirrhinus mrigala (Ham.) Asian J. Exp. Sci. 4 (1988) 36–34.

    Google Scholar 

  98. Ovais, M. Control of melanophore movements in isolated skin melanophores of a catfish Clarius batrachus (Linn.). Indian J. Physiol. Pharmac. 38 (1994) 185–188.

    CAS  Google Scholar 

  99. Moller, H. and Lerner, A.B. Melanocyte stimulating hormone inhibition by acetylcholine and noradrenaline in the frog skin bioassay. Acta Endocrinol. 51 (1966) 149–160.

    CAS  PubMed  Google Scholar 

  100. Bhattacharya, S.K., Parikh, A.K. and Das, P.K. Effect of acetylcholine on melanophores of Rana tigerina. Experientia 32 (1976) 1039–1040.

    CAS  PubMed  Article  Google Scholar 

  101. Ali, A.S., Peter, J. and Ali, S.A. Role of cholinergic receptors in melanophore responses of amphibians. Acta Biol. Hung. 46 (1995) 61–73.

    CAS  PubMed  Google Scholar 

  102. Garnier, M., Lamacz, M., Galas, L., Lenglet, S., Tonon, M-C. and Vaudry, H. Pharmacological and functional characterization of muscarinic receptors in the frog pars intermedia. Endocrinology 139 (1998) 3525–3533.

    CAS  PubMed  Article  Google Scholar 

  103. Grando, S.A., Pittelkow, M.R. and Schallreuter, K.U. adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J. Invest. Dermatol. 126 (2006) 1948–1965.

    CAS  PubMed  Article  Google Scholar 

  104. Buchli, R., Ndoye, A., Arredondo, J., Webber, R.J. and Grando, S.A. Identification and characterization of muscarinic acetylcholine receptor subtypes expressed in human skin melanocytes. Mol. Cell. Biochem. 228 (2001) 57–72.

    CAS  PubMed  Article  Google Scholar 

  105. Kurzen, H.L., Wessler, C.J., Kirkpatrick, K., Kawashima and Grando, S.A. The non neuronal cholinergic system in human skin. Horm. Metab. Res. 39 (2007) 125–135.

    CAS  PubMed  Article  Google Scholar 

  106. Iyengar, B. Modulation of melanocytic activity by acetylcholine. Acta Anat. (Basel) 136 (1989) 139–141.

    CAS  Article  Google Scholar 

  107. Wallstrom, M., Sand, L., Nilsson, F. and Hirsch, J.M. The long term effect of nicotine on the oral mucosa. Addiction 94 (1999) 417–423.

    CAS  PubMed  Article  Google Scholar 

  108. Fujii, R. Coloration and chromatophore. In: The physiology of fishes. (Evans, D.H. Ed.), CRC Press, Boca Raton, 1993, 535–562.

    Google Scholar 

  109. Filadelfi, A.M and Castrucci, A.M. Comparative aspects of the pineal/melatonin system of poikilothermic vertebrates. J. Pineal Res. 20 (1996) 175–186.

    CAS  PubMed  Article  Google Scholar 

  110. Mira, E. Prime osservazioni sull’ attivata della melatonina sui cromatofori di Scardinus erythrophtalmus L. — Arch. Int Pharmacodyn. Ther. 138 (1962) 41–50.

    CAS  PubMed  Google Scholar 

  111. Hu, F. Hormonal influence on goldfish pigment cells in vitro, In: Cinemicrography in cell biology, (Rose, G.G. Ed.), Academic Press, New York, 1963, 339–356.

    Google Scholar 

  112. Hafeez, M.A. Effects of melatonin on the body coloration and spontaneous swimming activity in rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. 36 (1970) 639–656.

    CAS  Article  Google Scholar 

  113. Owens, D.W., Gem, W.A., Ralph, C.L. and Boardman, T.J. Nonrelationship between plasma melatonin and background adaption in the rainbow trout (Salmo gairdneri) Gen. Comp. Endocrinol. 34 (1978) 459–467.

    CAS  PubMed  Article  Google Scholar 

  114. Visconti, M.A. and Castrucci, A.M. Melanotropin receptors in the cartilaginous fish, Potamotrygon reticulates and in lungfish, Lepidosiren paradoxa. Comp. Biochem. Physiol. 106 (1993) 523–528.

    Article  Google Scholar 

  115. Teh, M.T. and Sudgen, D. An endogenous 5 HT receptor mediates pigment granule dispersion in Xenopus laevis melanophores. Br. J. Pharm. 132 (2001) 1799–1808.

    CAS  Article  Google Scholar 

  116. David, S., Kathryn, D., Hough, K.A. and Teh, M.T. Melatonin, melatonin receptors and melanophores: a moving story. Pigment Cell Res. 17 (2004) 454–460.

    Article  Google Scholar 

  117. Slominski, A., Baker, J., Rosano, T.G., Guist, L.W., Ermak, G., Grande, M. and Gaudet, S.J. Metabolism of serotonin to N-acetylserotonin, melatonin and 5-methoxytryptamine in hamster skin culture. J. Biol. Chem. 271 (1996) 12281–12286.

    CAS  PubMed  Article  Google Scholar 

  118. Slominski, A., Pisarchik, A., Semak, I., Seatman, T., Wortsman, J., Szczesniewski, A., Slugocki, G., McNulty, J., Kauser, S., Tobin, D.J, Jing, C. and Johansson, O. Serotonergic and melatonergic systems are fully expressed in human skin. FASEB J. 16 (2002) 896–898.

    CAS  PubMed  Google Scholar 

  119. Slominski, A., Semak, I., Pisarchik, A., Sweatman, T., Szczesniewski, A. and Wortsman, J. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett. 511 (2002) 102–106.

    CAS  PubMed  Article  Google Scholar 

  120. Tobin, D.J., Zmijewski, M.A., Wortsman, J. and Paus, R. Melatonin in the skin: synthesis, metabolism and functions. Trends Endol. Metab. 19 (2008) 17–24.

    Article  CAS  Google Scholar 

  121. Slominski, A., Fischer, T.W., Zmijewski, A., Wortsman, J., Semak, I., Slominski, R.M. and Tobin, D.J. On the role of melatonin in skin physiology and pathology. Endocrinology 27 (2005) 137–148.

    CAS  Google Scholar 

  122. Cerletti. A. and Berde, B. Effect of d-lysergic acid diethylamide and 5-hydroxytryptamine on guppy Poecilia reticulatus chromatophores. Experientia 11 (1955) 312–313.

    CAS  PubMed  Article  Google Scholar 

  123. Ruffin, N.E., Reed, B.L. and Finnin B.C. The specificity of melatonin as a melanophore controlling factor in the pencil fish. Life Sci. 8Part II (1969) 1167–1174.

    CAS  PubMed  Article  Google Scholar 

  124. Davey, K.G. Serotonin and change of color in frogs. Nature 183 (1959) 1271–1273.

    CAS  PubMed  Article  Google Scholar 

  125. Veerdonk, K. and Vande, V.C.G. Serotonin,a melanocyte stimulating component in the dorsal skin secretion of Xenopus laevis. Nature 187 (1960) 948.

    Article  Google Scholar 

  126. Lerner, A.B. and Case, J.D. Melatonin. Fed. Proc. Am. Soc. Biol. 19 (1960) 590–592.

    CAS  Google Scholar 

  127. Nakajima, T. Active peptides in amphibian skin. TIPS 2 (1981) 202–205.

    CAS  Google Scholar 

  128. Yoshie, S., Toshihiko, I. and Fujita, T. Coexistence of bombesin and 5 hydroxytryptamine in the cutaneous gland of frog Bombina orientalis. Cell Tissue Res. 239 (1984) 25–29.

    Article  Google Scholar 

  129. Miller, L.J. Serotoninergic activity stimulates melanin dispersion within dermal melanophores of newts. Life Sci. 44 (1989) 355–359.

    CAS  PubMed  Article  Google Scholar 

  130. Potenza, M.N. and Michael, R.L. Characterization of serotonin receptor endogenous to frog melanophores. Naunyn. Schm. Arch. Pharm. 349 (1994) 11–19.

    CAS  Google Scholar 

  131. Olivereau, M. Serotonin and MSH secretion: Effect of parachlorpphenylalanine on the pituitary cytology of the eel. Cell Tissue Res. 19 (1978) 83–92.

    Google Scholar 

  132. Olivereau, M., Olivereau, J-M., and Aimar, C. Responses of MSH and prolactin cells to 5-hydroxytryptophan (5-HTP) in amphibians and teleosts. Cell Tissue Res. 207 (1980) 377–385.

    CAS  PubMed  Article  Google Scholar 

  133. Slominski, S.A., Wortsman, J. and Tobin, D.J. Serotonergic and melatonergic system: securing a place under the sun. FASEB J. 19 (2005) 176–194.

    CAS  PubMed  Article  Google Scholar 

  134. Lundeberg, L., El-Nour, H., Mohabbati, S., Morales, M., Azmitis, E. and Nordlind, K. Expression of serotonin receptors in allergic contact eczematous human skin. Arch. Dermatol. Res. 294 (2002) 393–398.

    CAS  PubMed  Google Scholar 

  135. Slominski, A., Pisarchik, A., Zbytek, B., Tobin, D.J., Kauser, S. and Wortsman, J. Functional activity of serotonergic and melatonergic systems expressed in the skin. J. Cell Physiol. 196 (2003) 144–153.

    CAS  PubMed  Article  Google Scholar 

  136. Slominski, A., Pisarchik, A., Semak, I., Sweatman, T., Szczesniewski, A. and Wortsman, J. Serotonergic system in hamster skin. J. Invest. Dermatol. 119 (2002) 934–942.

    CAS  PubMed  Article  Google Scholar 

  137. Slominski, A., Pisarchik, A., Semak, I., Seweatman, T. and Wortsman, J. Characterization of the serotonergic system in the C57BL/6 mouse skin. Eur. J. Biochem. 270 (2003) 3335–3344.

    CAS  PubMed  Article  Google Scholar 

  138. Slominski, A., Pisarchik, A., Johansson, O., Jing, C., Semak, I., Slugocki, G. and Wortsman, J. Tryptophan hydroxylase (TPH) expression in human skin cells. Biochim. Biophys. Acta 1639 (2003) 80–86.

    CAS  PubMed  Google Scholar 

  139. Iyengar, B. Indoleamines and the UV-light-sensitive photoperiodic responses of the melanocyte network: a biological calendar. Experientia 50 (1994) 733–736.

    CAS  PubMed  Article  Google Scholar 

  140. Séguéla, P., Watkins, K.C. and Descarries, L. Ultra structural relationships of serotonin axon terminals in the cerebral cortex of the adult rat. J. Comp. Neurol. 289 (1989) 129–142.

    PubMed  Article  Google Scholar 

  141. Göthert, M., Bühlen, M., Fink, K., and Molderings, G. Regulation of neurotransmitter release in the central and peripheral nervous system via pre-synaptic 5-HT receptors. In: Serotonin in the Central Nervous System and Periphery. (Takada, A., Curzon, G., Eds). Amsterdam: Elsevier, 1995, 23–30.

    Google Scholar 

  142. Johansson, O., Liu, P.-Y., Bondesson, L., Norlind, K., Olsson, M.J., Lontz, W., Verhofstad, A., Liang, Y., and Gangi, S. A serotonin-like immunoreactivity is present in human cutaneus melanocytes. J. Invest. Dermatol. 111 (1998) 1010–1014.

    CAS  PubMed  Article  Google Scholar 

  143. Norlind, K., Azmiyia, E.C. and Slominski, A. The skin as a mirror of the soul: exploring the possible roles of serotonin. Exp. Dermatol. 17 (2008) 301–311.

    Article  CAS  Google Scholar 

  144. Iyengar, B. The UV-responsive melanocyte system: a peripheral network for photoperiod time measurement, a function of indoleamine expression. Acta Anat. (Basel) 163 (1998) 173–178.

    CAS  Article  Google Scholar 

  145. Bos, J.D. Skin immune system (SIS). CRC Press, Boca Raton, 1997, Florida.

    Google Scholar 

  146. Fitzpatrick, T.B., Eisen, A.Z., Wolff, K., Freedberg, I.M. and Austen, K.F. Dermatology in General Medicine. Mc Graw-Hill New York, 1997.

    Google Scholar 

  147. Weisshaar, E., Ziethen, B. and Gollnick, H. Can a serotonin type 3 (5-HT3) receptor antagonist reduce experimentally-induced itch? Inflamm. Res. 46 (1997) 412–416.

    CAS  PubMed  Article  Google Scholar 

  148. Balaskas, E.V., Bamihas, G.I., Karamouzis, M., Voyiatzis, G. and Tourkantonis, A. Histamine and serotonin in uremic pruritis: effect of ondansetron in CAPD-pruritic patient. Nephron 78 (1998) 395–402.

    CAS  PubMed  Article  Google Scholar 

  149. Hagermark, O. Periperal and central mediators of itch. Skin Pharmacol. 5 (1992) 1–8.

    CAS  PubMed  Article  Google Scholar 

  150. Kam, P.C. and Tan, K.H., Pruritis-itching for a cause and relief? Anaesthesia 51 (1996) 1133–1138.

    CAS  PubMed  Article  Google Scholar 

  151. Marieb, E. Human anatomy and physiology. San Francisco: Benjamin Cummings. 2001, 414.

    Google Scholar 

  152. Hill, S.J., Ganellin, C.R., Timmerman, H., Schwartz, J.C., Shankley, N.P., Young, J.M., Schunack, W., Levi, R. and Haas, H.L.. International Union of Pharmacology XIII. Classification of histamine receptors. Pharmacol. Rev. 49 (1997) 253–278.

    CAS  PubMed  Google Scholar 

  153. Kendall, A.I. and Schmidt, F.O. Physiological action of certain cultures of the gas bacillus. Studies in bacterial metabolism. LXXXI. J. Infect. Diseases 39 (1926) 250–259.

    Google Scholar 

  154. Acharya, L.S.K. and Ovais, M. Effect of histaminergic drugs on melanophores of fish scales an in vitro study. J. Cell Tissue Res. 5 (2005) 425–478.

    Google Scholar 

  155. Bhattacharya, S.K., Sanyal, A.K., Lal, R. and Ghosal, S. Histamine releasing activity of some indole-3-alkylamines: Aspects of allergy and applied immunol. IV, 1973, (Sanyal,R.K. Ed.), Delhi.

  156. Fernando, M.M. and Grove, D.J. Melanophore aggregation in the plaice (Pleuronectes platessa L.) I. Changes in in vivo sensitivity to sympathomimetic amines. Comp. Biochem. Physiol. 48 A (1974 a) 711–721.

    Article  Google Scholar 

  157. Ali, S.A, Ali, A.S. and Ovais, M. Effect of histaminergic drugs on tail melanophores of tadpole, Bufo melanostictus. Indian J. Exp. Biol. 31 (1993) 440–442.

    CAS  PubMed  Google Scholar 

  158. Ovais, M. and Chimania, S.R. Mechanism of histamine induced dispersal response in the isolated web melanophores of a frog, Rana tigerina (Daud.). Indian J. Exp. Biol. 33 (1995) 348–352.

    CAS  PubMed  Google Scholar 

  159. Ali, S.A., Peter, J. and Ali A.S. Histamine receptors in the skin melanophores of Indian Bull frog Rana tigerina. Comp. Biochem Physiol. A. 121 (1998) 229–334.

    CAS  Article  Google Scholar 

  160. Peter, J., Ali, S.A. and Ali, S.A. Effect of histaminergic drugs on integumental melanophores of Bufo melanostictus. Indian J. Exp. Biol. 34 (1996) 427–430.

    CAS  PubMed  Google Scholar 

  161. Tomita, Y., Maeda, K. and Tagami, H. Stimulatory effect of histamine on normal human melanocytes in vitro. Tohoku J. Exp. Med. 155 (1988) 209–210.

    CAS  PubMed  Article  Google Scholar 

  162. Niekerk, C.H.V. and Prinsloo, A.E.M. Effect of skin pigmentation on the response to intra-dermal histamine. Int. Arch. Allergy Immunol. 76 (1985) 73–75.

    Article  Google Scholar 

  163. Yoshida, M., Takahashi, Y. and Inoue, S. Histamine induces melanogenesis and morphologic changes by protein kinase a activation via H2 receptors in human normal melanocytes. J. Invest. Dermatol. 114 (2000) 334–342.

    CAS  PubMed  Article  Google Scholar 

  164. Lassalle, M.W., Igarashi, S., Sasaki, M., Wakamatsu, K., Ito, S. and Horikoshi, T. Effects of melanogenesis-inducing nitric oxide and histamine on the production of eumelanin and pheomelanin in cultured human melanocytes. Pigment Cell Res. 16 (2003) 81–84.

    CAS  PubMed  Article  Google Scholar 

  165. Gilchrest, B.A., Soter, N.A., Stoff, J.S. and Mihm, M.C. Jr. The human sunburn reaction: histological and biochemical studies. J. Am. Acad. Dermatol. 5 (1981) 411–422.

    CAS  PubMed  Article  Google Scholar 

  166. Tomita, Y., Maeda, K. and Tagami, H. Mechanisms for hyper-pigmentation in postinflammatory pigmentation, urticaria pigmentosa and sunburn. Dermatologica 179 (1989) 149–153.

    Article  Google Scholar 

  167. Chou, V.H., Lee-Wong, M., Wong, R. and Cohen, H.W. The variances in histamine control skin-testing response between Asian/Pacific islanders and other racial groups. J. Allergy Clin. Immunol. 113 (2004) S181.

    Article  Google Scholar 

  168. Metz, J.R, Peter, J.J. and Flik, G. Molecular biology and physiology of the melanocortin system in fish: a review. Gen. Comp. Endocrinol. 48 (2006) 150–162.

    Article  CAS  Google Scholar 

  169. Selz, Y., Braasch, I., Hoffmann, C., Schmidt, C., Schulthesis, C., Schartl, M. and Volff, J.N. Evolution of melanocortin receptors in teleost fish: the melanocortin type 1 receptor. Gene 40 (2007) 114–122.

    Article  CAS  Google Scholar 

  170. Richardson, J., Lundegaard, P.R., Reynolds, N.L., Dorin, J.R., Porteous, D.J., Jackson, I.J. and Patton, E.E. mc1-r pathway regulation of zebrafish melanosome dispersion. Zebrafish 5 (2008) 289–295.

    CAS  PubMed  Article  Google Scholar 

  171. Haitina, T., Klovins, J., Takahashi, A., Lowgren, M., Ringholm, A., Enberg, J., Kawauchi, H., Larson, E., Fredriksson, R. and Schioth, H. Functional characterization of two melanocortin (MC) receptors in lamprey showing orthology to the MC1 and MC4 receptor subtypes. BMC Evol. Biol. 7 (2007) 101.

    PubMed  Article  CAS  Google Scholar 

  172. Cerdá-Reverter, J.M., Ling, M.K., Schiöth, H.B. and Peter, R.E. Molecular cloning, characterization and brain mapping of the melanocortin 5 receptor in the goldfish. J. Neurochem. 87 (2003) 1354–1367.

    PubMed  Article  CAS  Google Scholar 

  173. Abdel-Malek, Z., Swope, V.B., Suzuki, I., Akcali, C., Harriger, M.D., Boyce, S.T., Urabe, K. and Hearing, V.J. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl. Acad. Sci. USA 92 (1995) 1789–1793.

    CAS  PubMed  Article  Google Scholar 

  174. Thody, A.J, Ridley, K., Penny, R.J., Chalmers, R., Fisher, C. and Shuster, S. MSH peptides are present in mammalian skin. Peptides 4 (1983) 813–816.

    CAS  PubMed  Article  Google Scholar 

  175. Tsatmali, M., Yukitake, J. and Thody, A.J. ACTH1-17 is a more potent agonist at the human MC1 receptor than alpha-MSH. Cell. Mol. Biol. 45 (1999) 1029–1034.

    CAS  PubMed  Google Scholar 

  176. Tsatmali, M., Ancans, J., Yukitake, J. and Thody, A.J. Skin POMC peptides: their actions at the human MC-1 receptor and roles in the tanning response. Pigment Cell Res. 13Suppl 8 (2000) 125–129.

    PubMed  Article  Google Scholar 

  177. Tsatmali, M., Ancan, J. and Thody, A.J. Melanocyte function and its control by melanocortin peptides. J. Histochem. Cytochem. 50 (2002) 125–134.

    CAS  PubMed  Google Scholar 

  178. Kauser, S., Schallreuter, K.U., Thody, A.J., Gummer, C. and Tobin, D.J. Regulation of human epidermal melanocyte biology by beta-endorphin. J. Invest. Dermat. 120 (2003) 1073–1080.

    CAS  Article  Google Scholar 

  179. Kauser, S., Thody, A.J., Schallreuter, K.U., Gummer, C.L. and Tobin, D.J. A fully functional proopiomelanocortin/melanocortin-1 receptor system regulates the differentiation of human scalp hair follicle melanocytes. Endocrinology 146 (2005) 532–543.

    CAS  PubMed  Article  Google Scholar 

  180. Rousseau, K., Kauser, S., Pritchard, L., Warhurst, A., Oliver, R.L., Slominski, A., Wei, E.T., Thody, A.J, Tobin, D.J and White, A. Proopiomelanocortin (POMC), the ACTH/melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis. FASEB J. 21 (2007) 1844–1856.

    CAS  PubMed  Article  Google Scholar 

  181. Eys, G J.J.M. van and Peters, P.T. W. Evidence for a direct role of alpha-MSH in morphological background adaptation of the skin in Sarotheradon mossambicus. Cell Tissue Res. 217 (1981) 361–372.

    PubMed  Article  Google Scholar 

  182. Halaban, R. The regulation of normal melanocyte proliferation. Pigment Cell. Res. 13 (2000) 4–14.

    CAS  PubMed  Article  Google Scholar 

  183. Cerda-Reverter, J.M., Ringholm, A., Schioth, H.B. and Peter, R.E. Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: Involvement in the control of food intake. Endocrinology 144 (2003) 2336–2349.

    CAS  PubMed  Article  Google Scholar 

  184. Wendelaar Bonga, S.E. The stress response in fish. Physiol. Rev. 77 (1997) 591–625.

    CAS  PubMed  Google Scholar 

  185. Sumpter, J.P., Pickering, A.D. and Pottinger, T.G. Stress-induced elevation of plasma alpha-MSH and endorphin in brown trout, Salmo trutta L. Gen. Comp. Endocrinol. 59 (1985) 257–265.

    CAS  PubMed  Article  Google Scholar 

  186. Van der Salm, A.L., Metz, J.R., Wendelaar Bonga, S.E. and Flik, G. Alpha-MSH, the melanocortin-1 receptor and background adaptation in the Mozambique tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 144 (2005) 140–149.

    PubMed  Article  CAS  Google Scholar 

  187. Lamers, A.E., Balm, P.H.M., Haenen, H.E.M.G., Jenks, B.G. and Wendelaar Bonga, S.E. Regulation of differential release of alphamelanocyte stimulating hormone forms from the pituitary of a teleost fish, Oreochromis mossambicus. J. Endocrinol. 129 (1991) 179–187.

    CAS  PubMed  Article  Google Scholar 

  188. Novales, R.R. Recent studies on the melanin dispersing effect of MSH on melanophores. Gen. Comp. Endocrinol. Suppl. 3 (1972) 125–135.

    Article  Google Scholar 

  189. Baker, B.I., Wilson, J.F. and Bowley, T.J. Changes in pituitary and plasma levels of MSH in teleosts during physiological colour change. Gen. Comp. Endocrinol. 55 (1984) 142–149.

    CAS  PubMed  Article  Google Scholar 

  190. Iga, T. and Takabatake, I. Action of melanophore-stimulating hormone on melanophores of the cyprinid fish Zacco temmincki. Comp. Biochem. Physiol. 73 (1982) 51–55.

    CAS  Google Scholar 

  191. Abbott, F.S. The response of melanophores in isolated scales of Fundulus heteroclitus to melanophore-stimulating hormone (MSH). Can. J. Zool. 48 (1970) 581–584.

    CAS  PubMed  Article  Google Scholar 

  192. Arends, R.J., Rotllant, J., Metz, J.R., Mancera, J.M., Wendelaar-Bonga, S.E. and Flik, G. alpha-MSH acetylation in the pituitary gland of the sea bream (Sparus aurata L.) in response to different backgrounds, confinement and air exposure. J. Endocrinol. 166 (2000) 427–435.

    CAS  PubMed  Article  Google Scholar 

  193. Höglund, E., Balm, P.H.M. and Winberg, S. Behavioural and neuroendocrine effects of environmental background colour and social interaction in Arctic charr (Salvenlinus alpinus). J. Exp. Biol. 205 (2002) 2535–2543.

    PubMed  Google Scholar 

  194. Salm, A.L. van der, Martínez, M., Flik, G. and Wendelaar Bonga, S.E. Effects of husbandry conditions on the skin colour and stress response of red porgy, Pagrus pagrus. Aquaculture 241 (2004) 371–386.

    Article  Google Scholar 

  195. Van der Salm, A.L. Alpha-MSH, the melanocortin-1 receptor and background adaptation in the Mozambique tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 144 (2005) 140–149.

    PubMed  Article  CAS  Google Scholar 

  196. Lerner, A.B. and McGuire, J.S. Effect of alpha- and beta-melanocyte stimulating hormones on the skin colour of man. Nature 189 (1961) 176–179.

    CAS  PubMed  Article  Google Scholar 

  197. Lerner, A.B. and McGuire, J.S. Melanocyte-stimulating hormone and adrenocorticotrophic hormone. Their relation to pigmentation. N. Engl. J. Med. 270 (1964) 539–546.

    CAS  PubMed  Article  Google Scholar 

  198. Geschwind, II, Huseby, R.A. and Nishioka, R. The effect of melanocyte-stimulating hormone on coat color in the mouse. Recent Prog. Horm. Res. 28 (1972) 91–130.

    CAS  PubMed  Google Scholar 

  199. Spencer, J.D., Chavan, B., Marles, L.K., Kauser, S., Rokos, H. and Schallreuter, K.U. A novel mechanism in control of human pigmentation by beta-melanocyte-stimulating hormone and 7-tetrahydrobiopterin. J. Endocrinol. 187 (2005) 293–302.

    CAS  PubMed  Article  Google Scholar 

  200. Nordlund, J.J., Biossy, R.E., Hearing, V.J., King, R.A. and Ortonne, J.P. The pigmentary system. Physiology and pathophysiology. New York and Oxford: Oxford University Press.

  201. Krude, H., Beibermann, H., Luck, W., Horn, R., Brabant, G. and Gruters, A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19 (1998) 155–157.

    CAS  PubMed  Article  Google Scholar 

  202. Valverde, P., Healy, H., Jackson, I., Rees, J.L. and Thody, A.J. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 11 (1995) 328–330.

    CAS  PubMed  Article  Google Scholar 

  203. Robbins, L.S., Nadeau, J.H., Johnson, K.R., Kelly, M.A., Roselli-Rehfuss L., Baack, E., Mountjoy, K.G. and Cone, C.D. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72 (1993) 827–834.

    CAS  PubMed  Article  Google Scholar 

  204. Slominski, A., Plonka, P.M., Pisarchik, A., Smart, J.L., Tolle, V., Wortsman, J. and Low, M.J. Preservation of eumelanin hair pigmentation in proopiomelanocortin — deficient mice on a non-agouti (a/a) genetic background. Endocrinology 146 (2005) 1245–1253.

    CAS  PubMed  Article  Google Scholar 

  205. Baker, B. I. and Rance, T.A. Further observations on the distribution and properties of teleost melanin concentrating hormone. Gen. Comp. Endocrinol. 50 (1983) 423–431.

    CAS  PubMed  Article  Google Scholar 

  206. Naito, N., Nakai, Y., Kawauchi, H. and Hayashi, Y. Immunocytochemical identification melanin-concentrating hormone in the brain and pituitary gland of the teleost fishes Oncorhynchus keta and Salmo gairdneri. Cell. Tissue Res. 242 (1985) 41–48.

    CAS  Article  Google Scholar 

  207. Kawauchi, H., Kawazoe, I., Tsubokawa, M., Kishida, M. and Baker, B.I. Characterization of melanin concentrating hormone in chum pituitaries. Nature 305 (1983) 321–323.

    CAS  PubMed  Article  Google Scholar 

  208. Wilkes, B.C., Hruby, V.J, Castrucci, A.M., Sherbrooke, W.C. and Hadley, M.E. Synthesis of a cyclic melanotropic peptide exhibiting both melanin-concentrating and dispersing activities. Science 224 (1984) 1111–1113.

    CAS  PubMed  Article  Google Scholar 

  209. Saito, Y., Nothacker, H.P. and Cavelli, O. G. Protein coupled receptor SLC-1. Biochem. Biophys. Res. Commun. 289 (2000) 44–50.

    Article  CAS  Google Scholar 

  210. Saito, Y. and Nagasaki, H. The melanin-concentrating hormone system and its physiological functions. Res. Probl. Cell Differ. 46 (2008) 159–179.

    CAS  Article  Google Scholar 

  211. Nagai, M., Oshima, N. and Fujji, R. Comparative study of melanin concentrating hormone (MCH) action on teleost melanophores. Biol. Bull. 171 (1986) 360–370.

    CAS  Article  Google Scholar 

  212. Takahashi, A., Kosugi, T., Kobayashi, Y., Yamanome, T., Schioth, H.B. and Kawauchi, H. The melanin concentrating hormone receptor (MCH-R2) mediates the effect of MCH to control body color for background adaptation in the barfin flounder. Gen. Comp. Endocrinol. 151 (2007) 210–219.

    CAS  PubMed  Article  Google Scholar 

  213. Oshima, N., Kasukawa, H., Fujii, R., Wilkes, C., Hruby, N.J., Castrucci, M. de.L. and Hadley, M.E. Melanin concentrating hormone (MCH) effects on teleost (Chrysiptera cyanea) melanophores. J. Exp. Zoolog. 234 (1985) 175–180.

    Article  Google Scholar 

  214. Castrucci, A.M.L., Lebl, M., Hruby, V.J., Matsunaga, T.O. and Hadley, M.E. Melanin concentrating hormone (MCH): The message sequence. Life Sci. 45 (1989) 1141–1148.

    CAS  PubMed  Article  Google Scholar 

  215. Svensson, S.P.S., Norberg, T., Andersson, R.G.G., Grundström, N. and Karlsson, J.O.G. MCH-induced pigment aggregation in teleost melanophores is associated with a c-AMP reduction. Life Sci. 48 (1991) 2043–2046.

    CAS  PubMed  Article  Google Scholar 

  216. Kemp, E.H., Waterman, E.A., Hawes, B.E., O’Neill, K., Gottumukkala, R.V., Gawkrodger, D.J, Weetman, A.P. and Watson, P.F. The melanin-concentrating hormone receptor 1, a novel target of autoantibody responses in Vitiligo. J. Clin. Invest. 109 (2002) 923–930.

    CAS  PubMed  Google Scholar 

  217. Kemp, E.H. and Weetman, A.P. Melanin-concentrating hormone and melanin-concentrating hormone receptors in mammalian skin physiopathology. Peptides 30 (2009) 2071–2075.

    CAS  PubMed  Article  Google Scholar 

  218. Karne, S., Jayawickreme, C.K. and Lerner, M.R. Cloning and characterization of an endothelin-3 receptor (ET c receptor) from Xenopus laevis dermal melanophores. J. Biol. Chem. 268 (1993) 19126–19133.

    CAS  PubMed  Google Scholar 

  219. Fujii, R., Tanaka, Y. and Hayashi, H. Endothelin-1 causes aggregation of pigment in teleostean melanophores. Zoolog. Sci. 10 (1993) 763–772.

    CAS  Google Scholar 

  220. Fujita, T. and Fujii, R. Endothelins disperse light scattering organelles in leucophores of the medaka, Oryzias latipes. Zoolog. Sci. 14 (1997) 559–569.

    CAS  Article  Google Scholar 

  221. Murata, N. and Fujii, R. Pigment-aggregating action of endothelins on medaka xanthophores. Zoolog. Sci. 17 (2000) 853–862.

    CAS  Article  Google Scholar 

  222. Scarparo, A.C., Isoldi, M.C., de Lima, L.H., Visconti, M.A. and Castrucci, A.M. Expression of endothelin receptors in frog, chicken, mouse and human pigment cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 147 (2007) 640–646.

    PubMed  Article  CAS  Google Scholar 

  223. Demunter, A., De Wolf-Peeters, C., Degreef, H., Stas, M., van den and Oord, J.J. Expression of the endothelin B receptor in the pigment cell lesion of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch. 438 (2001) 485–491.

    CAS  PubMed  Article  Google Scholar 

  224. Civelli, J.O., Bunzow, R. and Grandy, D.K. Molecular diversity of the dopamine receptors. Annu. Rev. Pharmacol. Toxicol. 32 (1998) 281–307.

    Google Scholar 

  225. Kemenade, B.M, Tonon, M.C., Jenks, B.C. and Vaudry, H. Characteristics of receptors for dopamine in pars intermedia of the amphibian Xenopus laevis. Neuroendorinology 44 (1986) 446–456.

    Article  Google Scholar 

  226. Ovais, M. and Chimania, S.R. Evidence of presence of GABA-ergic receptor mediated dispersion in isolated scale melanophores of a carp, Cirrhinus mrigala Ham. Indian J. Exp. Biol. 40 (2002) 78–82.

    CAS  PubMed  Google Scholar 

  227. Marotti, L.A. Jr., Jayawickreme, C.K. and Lerner, M.R. Functional characterization of receptor for vasoactive-intestinal peptide in cultured melanophores from Xenopus laevis. Pigment Cell Res. 12 (1999) 89–97.

    CAS  PubMed  Article  Google Scholar 

  228. McClintock, T.S., Rising, J.P. and Lerner, M.R. Melanophore pigment dispersion responses to agonists show two patterns of sensitivity to inhibitors of cAMP-dependent protein kinase and protein kinase C. J. Cell Physiol. 167 (1996) 1–7

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sharique A. Ali.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salim, S., Ali, S.A. Vertebrate melanophores as potential model for drug discovery and development: A review. Cell Mol Biol Lett 16, 162–200 (2011). https://doi.org/10.2478/s11658-010-0044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-010-0044-y

Key words

  • G-protein-coupled receptors
  • Melanocytes
  • Skin pigmentation
  • Neurotransmitter
  • Pigment cells
  • Melanocyte-stimulating hormone
  • MSH
  • Drug discovery