Skip to main content

Stress-induced expression of p53 target genes is insensitive to SNW1/SKIP downregulation

Abstract

Pharmacological inhibition of protein kinases that are responsible for the phosphorylation of the carboxy-terminal domain (CTD) of RNA Pol II during transcription by 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB) leads to severe inhibition of mRNA synthesis and activates p53. Transcription of the p53 effectors that are induced under these conditions, such as p21 or PUMA, must bypass the requirement for CTD phosphorylation by the positive elongation factor P-TEFb. Here, we have downregulated SNW1/SKIP, a splicing factor and a transcriptional co-regulator, which was found to interact with P-TEFb and synergistically affect Tat-dependent transcription elongation of HIV 1. Using the colon cancer derived cell line HCT116, we have found that both doxorubicin- and DRB-induced expression of p21 or PUMA is insensitive to SNW1 downregulation by siRNA. This suggests that transcription of stress response genes, unlike, e.g., the SNW1-sensitive mitosis-specific genes, can proceed uncoupled from regulators that normally function under physiological conditions.

Abbreviations

BrdU:

bromodeoxyuridine

CTD:

carboxy-terminal domain

Doxo:

doxorubicin

DRB:

5,6-dichloro-1-β-D-ribofuranosyl-benzimidazole

P-TEFb:

positive transcription elongation factor b

RNA Pol II:

RNA polymerase II

References

  1. 1.

    Pluquet, O. and Hainaut, P. Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett. 174 (2001) 1–15.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Yang, H., Wen, Y.Y., Zhao, R., Lin, Y.L., Fournier, K., Yang, H.Y., Qiu, Y., Diaz, J., Laronga, C. and Lee, M.H. DNA damage-induced protein 14-3-3 sigma inhibits protein kinase B/Akt activation and suppresses Akt-activated cancer. Cancer Res. 66 (2006) 3096–3105.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Nakano, K. and Vousden, K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7 (2001) 683–694.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Yu, J., Zhang, L., Hwang, P.M., Kinzler, K.W. and Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7 (2001) 673–682.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S.L., Galle, P.R., Stremmel, W., Oren, M. and Krammer, P.H. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188 (1998) 2033–2045.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Espinosa, J.M. Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene 27 (2008) 4013–4023.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Hargreaves, D.C., Horng, T. and Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138 (2009) 129–145.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R. and Young, R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130 (2007) 77–88.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Ramirez-Carrozzi, V.R., Braas, D., Bhatt, D.M., Cheng, C.S., Hong, C., Doty, K.R., Black, J.C., Hoffmann, A., Carey, M. and Smale, S.T. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138 (2009) 114–128.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Espinosa, J.M., Verdun, R.E. and Emerson, B.M. p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol. Cell 12 (2003) 1015–1027.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Gomes, N.P., Bjerke, G., Llorente, B., Szostek, S.A., Emerson, B.M. and Espinosa, J.M. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev. 20 (2006) 601–612.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Morachis, J.M., Murawsky, C.M. and Emerson, B.M. Regulation of the p53 transcriptional response by structurally diverse core promoters. Genes Dev. 24 (2010) 135–147.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Juven-Gershon, T. and Kadonaga, J.T. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev. Biol. 339 (2010) 225–229.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Gomes, N.P. and Espinosa, J.M. Disparate chromatin landscapes and kinetics of inactivation impact differential regulation of p53 target genes. Cell Cycle 9 (2010) 3428–3437.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Gomes, N.P. and Espinosa, J.M. Gene-specific repression of the p53 target gene PUMA via intragenic CTCF-Cohesin binding. Genes Dev. 24 (2010) 1022–1034.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Bres, V., Yoh, S.M. and Jones, K.A. The multi-tasking P-TEFb complex. Curr. Opin. Cell Biol. 20 (2008) 334–340.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Lenasi, T. and Barboric, M. P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms. RNA. Biol. 7 (2010) 145–150.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Turinetto, V., Porcedda, P., Orlando, L., De Marchi, M., Amoroso, A. and Giachino, C. The cyclin-dependent kinase inhibitor 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole induces nongenotoxic, DNA replicationindependent apoptosis of normal and leukemic cells, regardless of their p53 status. BMC Cancer 9 (2009) 281.

    PubMed  Article  Google Scholar 

  19. 19.

    Medlin, J., Scurry, A., Taylor, A., Zhang, F., Peterlin, B.M. and Murphy, S. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J. 24 (2005) 4154–4165.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Garriga, J., Xie, H., Obradovic, Z. and Grana, X. Selective control of gene expression by CDK9 in human cells. J. Cell Physiol. 222 (2010) 200–208.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Bres, V., Gomes, N., Pickle, L. and Jones, K.A. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev. 19 (2005) 1211–1226.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Folk, P., Puta, F. and Skruzny, M. Transcriptional coregulator SNW/SKIP: the concealed tie of dissimilar pathways. Cell Mol. Life Sci. 61 (2004) 629–640.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Makarov, E.M., Makarova, O.V., Urlaub, H., Gentzel, M., Will, C.L., Wilm, M. and Luhrmann, R. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298 (2002) 2205–2208.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Zhang, C., Dowd, D.R., Staal, A., Gu, C., Lian, J.B., van Wijnen, A.J., Stein, G.S. and MacDonald, P.N. Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. J. Biol. Chem. 278 (2003) 35325–35336.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Bres, V., Yoshida, T., Pickle, L. and Jones, K.A. SKIP interacts with c-Myc and Menin to promote HIV-1 Tat transactivation. Mol. Cell 36 (2009) 75–87.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Williams, C., Edvardsson, K., Lewandowski, S.A., Strom, A. and Gustafsson, J.A. A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 27 (2008) 1019–1032.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Livak, K.J. and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (2001) 402–408.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Ambrozkova, M., Puta, F., Fukova, I., Skruzny, M., Brabek, J. and Folk, P. The fission yeast ortholog of the coregulator SKIP interacts with the small subunit of U2AF. Biochem. Biophys. Res. Commun. 284 (2001) 1148–1154.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Hou, X., Xie, K., Yao, J., Qi, Z. and Xiong, L. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc. Natl. Acad. Sci. U. S. A 106 (2009) 6410–6415.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Mintz, P.J., Patterson, S.D., Neuwald, A.F., Spahr, C.S. and Spector, D.L. Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 18 (1999) 4308–4320.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Kim, Y.J., Noguchi, S., Hayashi, Y.K., Tsukahara, T., Shimizu, T. and Arahata, K. The product of an oculopharyngeal muscular dystrophy gene, poly(A)-binding protein 2, interacts with SKIP and stimulates muscle-specific gene expression. Hum. Mol. Genet. 10 (2001) 1129–1139.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kadener, S., Cramer, P., Nogues, G., Cazalla, D., de la, M.M., Fededa, J.P., Werbajh, S.E., Srebrow, A. and Kornblihtt, A.R. Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing. EMBO J. 20 (2001) 5759–5768.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Cmarko, D., Verschure, P.J., Martin, T.E., Dahmus, M.E., Krause, S., Fu, X.D., van Driel, R. and Fakan, S. Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol. Biol. Cell 10 (1999) 211–223.

    PubMed  CAS  Google Scholar 

  34. 34.

    Xie, S.Q., Martin, S., Guillot, P.V., Bentley, D.L. and Pombo, A. Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine2 residues of the C-terminal domain. Mol. Biol. Cell 17 (2006) 1723–1733.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Yang, Z., He, N. and Zhou, Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression. Mol. Cell Biol. 28 (2008) 967–976.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Pacheco, T.R., Moita, L.F., Gomes, A.Q., Hacohen, N. and Carmo-Fonseca, M. RNA interference knockdown of hU2AF35 impairs cell cycle progression and modulates alternative splicing of Cdc25 transcripts. Mol. Biol. Cell 17 (2006) 4187–4199.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Neumann, B., Walter, T., Heriche, J.K., Bulkescher, J., Erfle, H., Conrad, C., Rogers, P., Poser, I., Held, M., Liebel, U., Cetin, C., Sieckmann, F., Pau, G., Kabbe, R., Wunsche, A., Satagopam, V., Schmitz, M.H., Chapuis, C., Gerlich, D.W., Schneider, R., Eils, R., Huber, W., Peters, J.M., Hyman, A.A., Durbin, R., Pepperkok, R. and Ellenberg, J. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464 (2010) 721–727.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Kittler, R., Putz, G., Pelletier, L., Poser, I., Heninger, A.K., Drechsel, D., Fischer, S., Konstantinova, I., Habermann, B., Grabner, H., Yaspo, M.L., Himmelbauer, H., Korn, B., Neugebauer, K., Pisabarro, M.T. and Buchholz, F. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432 (2004) 1036–1040.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Gahura, O., Abrhamova, K., Skruzny, M., Valentova, A., Munzarova, V., Folk, P. and Puta, F. Prp45 affects Prp22 partition in spliceosomal complexes and splicing efficiency of non-consensus substrates. J. Cell Biochem. 106 (2009) 139–151.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Ljungman, M., Zhang, F., Chen, F., Rainbow, A.J. and McKay, B.C. Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene 18 (1999) 583–592.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petr Folk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tolde, O., Folk, P. Stress-induced expression of p53 target genes is insensitive to SNW1/SKIP downregulation. Cell Mol Biol Lett 16, 373–384 (2011). https://doi.org/10.2478/s11658-011-0012-1

Download citation

Key words

  • P-TEFb
  • SNW1
  • p21
  • p53
  • Transcriptional elongation
  • Genotoxic stress