Skip to main content
  • Research Article
  • Published:

Quantitative and dynamic expression profile of premature and active forms of the regional ADAM proteins during chicken brain development

Abstract

The ADAM (A Disintegrin and Metalloprotease) family of transmembrane proteins plays important roles in embryogenesis and tissue formation based on their multiple functional domains. In the present study, for the first time, the expression patterns of the premature and the active forms of six members of the ADAM proteins — ADAM9, ADAM10, ADAM12, ADAM17, ADAM22 and ADAM23 — in distinct parts of the developing chicken brain were investigated by quantitative Western blot analysis from embryonic incubation day (E) 10 to E20. The results show that the premature and the active forms of various ADAM proteins are spatiotemporally regulated in different parts of the brain during development, suggesting that the ADAMs play a very important role during embryonic development.

Abbreviations

ADAM:

A Disintegrin and Metalloprotease

APP:

amyloid precursor protein

BCA:

bicinchoninic acid

CNS:

central nervous system

ECM:

extracellular matrix

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

ELISA:

enzyme-linked immunosorbent assay

HE-EGF:

heparin-binding EGFlike growth factor

kDa:

kilodalton

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

LGI1:

leucine-rich glioma inactivated 1

RT-PCR:

reverse transcriptionpolymerase chain reaction

SDS:

sodium dodecyl sulfate

TACE:

tumor necrosis factor alpha converting enzyme

TBST:

tris-buffered saline-Tween

TGF-α:

transforming growth factor-α

TNF-α:

tumor necrosis factor-α

References

  1. Wolfsberg, T.G., Straight, P.D., Gerena, R.L., Huovila, A.P., Primakoff, P., Myles, D.G. and White, J.M. ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and metalloprotease domain. Dev. Biol. 169 (1995) 378–383.

    Article  PubMed  CAS  Google Scholar 

  2. Black, R.A. and White, J.M. ADAMs: focus on the protease domain. Curr. Opin. Cell Biol. 10 (1998) 654–659.

    Article  PubMed  CAS  Google Scholar 

  3. Schlöndorff, J. and Blobel, C.P. Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J. Cell Sci. 112 (1999) 3603–3617.

    PubMed  Google Scholar 

  4. Edwards, D.R., Handsley, M.M. and Pennington, C.J. The ADAM metalloproteinases. Mol. Aspects. Med. 29 (2008) 258–289.

    Article  PubMed  CAS  Google Scholar 

  5. Seals, D.F. and Courtneidge, S.A. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 17 (2003) 7–30.

    Article  PubMed  CAS  Google Scholar 

  6. White, J.M. ADAMs: modulators of cell-cell and cell-matrix interactions. Curr. Opin. Cell Biol. 15 (2003) 598–606.

    Article  PubMed  CAS  Google Scholar 

  7. Duffy, M.J., Lynn, D.J., Lloyd, A.T. and O’shea, C.M. The ADAMs family of proteins: from basic studies to potential clinical applications. Thromb. Haemost. 89 (2003) 622–631.

    PubMed  CAS  Google Scholar 

  8. Blobel, C.P. ADAMs: key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol. 6 (2005) 32–43.

    Article  PubMed  CAS  Google Scholar 

  9. Yang, P., Baker, K.A. and Hagg, T. The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog. Neurobiol. 79 (2006) 73–94.

    Article  PubMed  CAS  Google Scholar 

  10. Alfandari, D., McCusker, C. and Cousin, H. ADAM function in embryogenesis. Semin Cell Dev. Biol. 20 (2009) 153–163.

    Article  PubMed  CAS  Google Scholar 

  11. Neuner, R., Cousin, H., McCusker, C., Coyne, M. and Alfandari, D. Xenopus ADAM19 is involved in neural, neural crest and muscle development. Mech. Dev. 126 (2009) 240–255.

    Article  PubMed  CAS  Google Scholar 

  12. Hartmann, D., de Strooper, B., Serneels, L., Craessaerts, K., Herreman, A., Annaert, W., Umans, L., Lübke, T., Illert, A.L., von Figura, K. and Saftig, P. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for a-secretase activity in fibroblasts. Hum. Mol. Gen. 11 (2002) 2615–2624.

    Article  PubMed  CAS  Google Scholar 

  13. Horiuchi, K., Zhou, H.-M., Kelly, K., Manova, K. and Blobel, C.P. Evaluation of the contributions of ADAMs 9, 12, 15, 17, and 19 to heart development and ectodomain shedding of neuregulins β1 and β2. Dev. Biol. 283 (2005) 459–471.

    Article  PubMed  CAS  Google Scholar 

  14. Leighton, P.A., Mitchell, K.J., Goodrich, L.V., Lu, X., Pinson, K., Scherz, P., Skarnes, W.C. and Tessier-Lavigne, M. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410 (2001) 174–179.

    Article  PubMed  CAS  Google Scholar 

  15. Sagane, K., Hayakawa, K., Kai, J., Hirohashi, T., Takahashi, E., Miyamoto, N., Ino, M., Oki, T., Yamazaki, K. and Nagasu, T. Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice. BMC Neurosci. 6 (2005) 33.

    Article  PubMed  Google Scholar 

  16. Lin, J., Luo, J. and Redies, C. Differential expression of five members of the ADAM family in the developing chicken brain. Neuroscience 157 (2008) 360–375.

    Article  PubMed  CAS  Google Scholar 

  17. Lin, J., Yan, X., Markus, A., Redies, C., Rolfs, A. and Luo, J. Expression of seven members of the ADAM family in developing chicken spinal cord. Dev. Dyn. 239 (2010) 1246–1254.

    Article  PubMed  CAS  Google Scholar 

  18. Muraguchi, T., Takegami, Y., Ohtsuka, T., Kitajima, S., Chandana, E.P., Omura, A., Miki, T., Takahashi, R., Matsumoto, N., Ludwig, A., Noda, M. and Takahashi, C. RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat. Neurosci. 10 (2007) 838–845.

    Article  PubMed  CAS  Google Scholar 

  19. Murase, S., Cho, C., White, J.M. and Horwitz, A.F. ADAM2 promotes migration of neuroblasts in the rostral migratory stream to the olfactory bulb. Eur. J Neurosci. 27 (2008) 1585–1595.

    Article  PubMed  Google Scholar 

  20. Chen, Y.Y., Hehr, C.L., Atkinson-Leadbeater, K., Hocking, J.C. and MCFarlane, S. Targeting of retinal axons requires the metalloprotease ADAM10. J. Neurosci. 27 (2007) 8448–8456.

    Article  PubMed  CAS  Google Scholar 

  21. Hoffrogge, R., Mikkat, S., Scharf, C., Beyer, S., Christoph, H., Pahnke, J., Mix, E., Berth, M., Uhrmacher, A., Zubrzycki, I., Miljan, E., Völker, U. and Rolfs, A. 2-DE proteome analysis of a proliferating and differentiating human neuronal stem cell line (ReNcell VM). Proteomics 6 (2006) 1833–1847.

    Article  PubMed  CAS  Google Scholar 

  22. Peters, S., Mix, E., Bauer, P., Weinelt, S., Schubert, B., Knoblich, R., Böttcher, T., Strauss, U., Pahnke, J., Cattaneo, E., Wree, A. and Rolfs, A. Wnt-5a expression in the rat neuronal progenitor cell line ST14A. Exp. Brain Res. 158 (2004) 189–195.

    Article  PubMed  CAS  Google Scholar 

  23. Hotoda, N., Koike, H., Sasagawa, N. and Ishiuraa, S. A secreted form of human ADAM9 has an α-secretase activity for APP. Biochem. Biophys. Res. Commun. 293 (2002) 800–805.

    Article  PubMed  CAS  Google Scholar 

  24. Hall, R.J. and Erickson, C. ADAM10: an active metalloprotease expressed during avian epithelial morphogenesis. Dev. Biol. 256 (2003) 146–159.

    Article  PubMed  CAS  Google Scholar 

  25. Yagami-Hiromasa, T., Sato, T., Kurisaki, T., Kamijo, K., Nabeshima, Y. and Fujisawa-Sehara, A. A metalloprotease-disintegrin participating in myoblast fusion. Nature 377 (1995) 652–656.

    Article  PubMed  CAS  Google Scholar 

  26. Moss, M.L., Sklair-Tavron, L. and Nudelman, R. Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 4 (2008) 300–309.

    Article  PubMed  CAS  Google Scholar 

  27. Gonzales, P.E., Galli, J.D. and Milla, M.E. Identification of key sequence determinants for the inhibitory function of the prodomain of TACE. Biochemistry 47 (2008) 9911–9919.

    Article  PubMed  CAS  Google Scholar 

  28. Milla, M.E., Leesnitzer, M.A., Moss, M.L., Clay, W.C., Carter, H.L., Miller, A.B., Su, J.L., Lambert, M.H., Willard, D.H., Sheeley, D.M., Kost, T.A., Burkhart, W., Moyer, M., Blackburn, R.K., Pahel, G.L., Mitchell, J.L., Hoffman, C.R. and Becherer, J.D. Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE). J. Biol. Chem. 274 (1999) 30563–30570.

    Article  PubMed  CAS  Google Scholar 

  29. Hougaard, S., Loechel, F., Xu, X., Tajima, R., Albrechtsen, R. and Wewer, U.M. Trafficking of human ADAM 12-L: retention in the trans-Golgi network. Biochem. Biophys. Res. Commun. 275 (2000) 261–267.

    Article  PubMed  CAS  Google Scholar 

  30. Li, X., Yan, Y., Huang, W., Yang, Y., Wang, H. and Chang, L. The regulation of TACE catalytic function by its prodomain. Mol. Biol. Rep. 36 (2009) 641–651.

    Article  PubMed  CAS  Google Scholar 

  31. Asai, M., Hattori, C., Szabó, B., Sasagawa, N., Maruyama, K., Tanuma, S. and Ishiura, S. Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem. Biophys. Res. Commun. 301 (2003) 231–235.

    Article  PubMed  CAS  Google Scholar 

  32. Roghani, M., Becherer, J.D., Moss, M.L., Atherton, R.E., Erdjument-Bromage, H., Arribas, J., Blackburn, R.K., Weskamp, G., Tempst, P. and Blobel, C.P. Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J. Biol. Chem. 274 (1999) 3531–3540.

    Article  PubMed  CAS  Google Scholar 

  33. Schwettmann, L. and Tschesche, H. Cloning and expression in Pichia pastoris of metalloprotease domain of ADAM 9 catalytically active against fibronectin. Protein Expr. Purif. 21 (2001) 65–70.

    Article  PubMed  CAS  Google Scholar 

  34. Izumi, Y., Hirata, M., Hasuwa, H., Iwamoto, R., Umata, T., Miyado, K., Tamai, Y., Kurisaki, T., Sehara-Fujisawa, A., Ohno, S. and Mekada, E. A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membraneanchored heparin-binding EGF-like growth factor, EMBO J. 17 (1998) 7260–7272.

    Article  PubMed  CAS  Google Scholar 

  35. Weskamp G., Cai, H., Brodie, T.A., Higashyama, S., Manova, K., Ludwig, T. and Blobel, C.P. Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Mol. Cell Biol. 22 (2002) 1537–1544.

    Article  PubMed  CAS  Google Scholar 

  36. Nath, D., Slocombe, P.M., Webster, A., Stephens, P.E., Docherty, A.J. and Murphy, G. Meltrin gamma (ADAM-9) mediates cellular adhesion through alpha(6)beta(1)integrin, leading to a marked induction of fibroblast cell motility. J. Cell Sci. 113 (2000) 2319–2328.

    PubMed  CAS  Google Scholar 

  37. Zamenhof, S., Stimulation of brain development in chick embryo by elevated temperature. Roux Arch. Dev. Biol. 180 (1976) 1–8.

    Article  CAS  Google Scholar 

  38. Hatta, K., Takagi, S., Fujisawa, H. and Takeichi, M. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev. Biol. 120 (1987) 215–227.

    Article  PubMed  CAS  Google Scholar 

  39. Pan, D. and Rubin, G.M. Kuzbanian controls proteolytic processing of Notch and mediated lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90 (1997) 271–280.

    Article  PubMed  CAS  Google Scholar 

  40. Fambrough, D., Pan, D., Rubin, G.M. and Goodman, C. The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc. Natl. Acad. Sci. USA 93 (1996) 13233–13238.

    Article  PubMed  CAS  Google Scholar 

  41. Rooke, J., Pan, D., Xu, T. and Rubin, G.M. KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273 (1996) 1227–1231.

    Article  PubMed  CAS  Google Scholar 

  42. Yan, Y., Shirakabe, K. and Werb, Z. The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G proteincoupled receptors. J. Cell Biol. 158 (2002) 221–226.

    Article  PubMed  CAS  Google Scholar 

  43. Sahin, U. and Blobel, C.P. Ectodomian shedding of the EGF-receptor ligand epigen is mediated by ADAM17. FEBS Lett. 581 (2007) 41–44.

    Article  PubMed  CAS  Google Scholar 

  44. Maretzky, T., Reiss, K., Ludwig, A., Buchholz, J., Scholz, F., Proksch, E., de Strooper, B., Hartmann, D. and Saftig, P. ADAM10 mediates Ecadherin shedding and regulates epithelial cell-cell adhesion, migration, and betacatenin translocation. Proc. Natl. Acad. Sci. USA 102 (2005) 9182–9187.

    Article  PubMed  CAS  Google Scholar 

  45. Maretzky, T., Scholz, F., Köten, B., Proksch, E., Saftig, P. and Reiss, K. ADAM10-mediated E-cadherin release is regulated by proinflammatory cytokines and modulates keratinocyte cohesion in eczematous dermatitis. J. Invest. Dermatol. 128 (2008) 1737–1746.

    Article  PubMed  CAS  Google Scholar 

  46. Reiss, K., Maretzky, T., Ludwig, A., Tousseyn, T., de Strooper, B., Hartmann, D. and Saftig, P. ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and β-catenin nuclear signalling. EMBO J. 24 (2005) 742–752.

    Article  PubMed  CAS  Google Scholar 

  47. Reiss, K., Maretzky, T., Haas, I.-G., Schulte, M., Ludwig, A., Frank, M. and Saftig, P. Regulated ADAM10-dependent ectodomain shedding of gamma-protocadherin C3 modulated cell-cell adhesion. J. Biol. Chem. 281 (2006) 21735–21744.

    Article  PubMed  CAS  Google Scholar 

  48. Schulz, B., Pruessmeyer, J., Maretzky, T., Ludwig, A., Blobel, C.P., Saftig, P. and Reiss, K. ADAM10 regulates endothelial permeability and T-cell transmigration by proteolysis of vascular endothelial cadherin. Circ. Res. 102 (2008) 1192–1201.

    Article  PubMed  CAS  Google Scholar 

  49. Bernstein, H.G., Keilhoff, G., Bukowska, A., Ziegeler, A., Funke, S., Dobrowolny, H., Kanakis, D., Bogerts, B. and Lendeckel, U. ADAM (a disintegrin and metallo-protease) 12 is expressed in rat and human brain and localized to oligodendrocytes. J. Neurosci. Res. 75 (2004) 353–360.

    Article  PubMed  CAS  Google Scholar 

  50. Gilpin, B.J., Loechel, F., Mattei, M.G., Engvall, E., Albrechtsen, R. and Wewer, U.M. A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. J. Biol. Chem. 273 (1998) 157–166.

    Article  PubMed  CAS  Google Scholar 

  51. Galliano, M.F., Huet, C., Frygelius, J., Polgren, A., Wewer, U.M. and Engvall, E. Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha-actinin-2, is required for myoblast fusion. J. Biol. Chem. 275 (2000) 13933–13939.

    Article  PubMed  CAS  Google Scholar 

  52. Black, R.A. Tumor necrosis factor-alpha converting enzyme. Int. J. Biochem. Cell Biol. 34 (2002) 1–5.

    Article  PubMed  CAS  Google Scholar 

  53. Zheng, Y., Saftig, P., Hartmann, D. and Blobel, C.P. Evaluation of the contribution of different ADAMs to TNFα shedding and of the function of the TNFα ectodomain in ensuring selective stimulated shedding by the TNFα convertase (TACE/ADAM17). J. Biol. Chem. 279 (2004) 42898–42906.

    Article  PubMed  CAS  Google Scholar 

  54. Kenny, P.A. and Bissel, M.J. Targeting TACE-dependent EGFR-ligand shedding in breast cancer. J. Clinic. Invest. 117 (2007) 337–345.

    Article  CAS  Google Scholar 

  55. Le Gall, S.M., Bobe, P., Reiss, K., Horiuchi, K., Niu, X.-D., Lundell, D., Gibb, D.R., Conrad, D., Saftig, P. and Blobel, C.P. ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins as transforming growth factor α, L-selectin, and tumor necrosis factor. Mol. Biol. Cell 20 (2009) 1785–1794.

    Article  PubMed  Google Scholar 

  56. Shah, B.H. and Catt, K.J. TACE-dependent EGF receptor activation in angiotensin-II-induced kidney disease. Trends Pharm. Sci. 27 (2006) 235–237.

    Article  PubMed  CAS  Google Scholar 

  57. Lautrette, A., Li, S., Alili, R., Sunnarborg, S.W., Burtin, M., Lee, D.C., Friedlander, G. and Terzi, F. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat. Med. 11 (2005) 867–874.

    Article  PubMed  CAS  Google Scholar 

  58. Sternlicht, M.D. and Sunnarborg, S.W. The ADAM17-amphiregulin-EGFR axis in mammary development and cancer. J. Mam. Gland. Bio. Neopla. 13 (2008) 181–194.

    Article  Google Scholar 

  59. Sagane, K., Ohya, Y., Hasegawa, Y. and Tanaka, I. Metalloproteinaselike, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: novel human cellular disintegrins highly expressed in the brain. Biochem. J. 334 (1998) 93–98.

    PubMed  CAS  Google Scholar 

  60. Fukata, Y., Adesnik, H., Iwanaga, T., Bredt, D.S., Nicoll, R.A. and Fukata, M. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313 (2006) 1792–1795.

    Article  PubMed  CAS  Google Scholar 

  61. Zhu, P., Sang, Y., Xu, H., Zhao, J., Xu R., Sun, Y., Xu, T., Wang, X., Chen, L., Feng, H., Li, C. and Zhao, S. ADAM22 plays an important role in cell adhesion and spreading with the assistance of 14-3-3. Biochem. Biophys. Res. Commun. 331 (2005) 938–946.

    Article  PubMed  CAS  Google Scholar 

  62. Sun, Y.P., Wang, Y., Zhang, J., Tao, J., Wang, C., Jing, N., Wu, C., Deng, K.J. and Qiao, S. ADAM23 plays multiple roles in neuronal differentiation of P19 embryonal carcinoma cells. Neurochem. Res. 32 (2007) 1217–1223.

    Article  PubMed  CAS  Google Scholar 

  63. Sun, Y.P., Deng, K.J., Wang, F., Zhang, J., Huang, X., Qiao, S. and Zhao, S. Two novel isoforms of Adam23 expressed in the developmental process of mouse and human brains. Gene 325 (2004) 171–178.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankai Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markus, A., Yan, X., Rolfs, A. et al. Quantitative and dynamic expression profile of premature and active forms of the regional ADAM proteins during chicken brain development. Cell Mol Biol Lett 16, 431–451 (2011). https://doi.org/10.2478/s11658-011-0016-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-011-0016-x

Key words