Skip to main content
  • Review
  • Published:

Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion

Abstract

Recently, stem cell biology has become an interesting topic, especially in the context of treating diseases and injuries using transplantation therapy. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Ideally, stem cells for regenerative medical application should be found in abundant quantities, harvestable in a minimally invasive procedure, then safely and effectively transplanted to either an autologous or allogenic host. The two main groups of stem cells, embryonic stem cells and adult stem cells, have been expanded to include perinatal stem cells. Mesenchymal stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in case of genetic disorders.

This review highlights the characteristics and therapeutic potential of three human mesenchymal stem cell types obtained from perinatal sources: Wharton’s jelly, the amnion, and the chorion.

Abbreviations

AFCs:

amniotic fluid-derived mesenchymal stromal cells

AM-MSCs:

amniotic membrane mesenchymal stromal cells

BM-MSCs:

bone marrow mesenchymal stem cells

C-MSCs:

chorionic mesenchymal stem/stromal cells

EGF:

epidermal growth factor

ESCs:

embryonic stem cells

FGF:

fibroblast growth factor

HLA:

human leukocyte antigen

HSCs:

hematopoietic stem cells

IGF:

insulin growth factor

Il:

interleukin

MHC:

major histocompatibility complex

MSCs:

mesenchymal stem cells

PMSCs:

placenta mesenchymal stem/stromal cells

TGF-β:

transforming growth factor-β

UC-MSCs:

umbilical cord mesenchymal stromal/stem cells

VEGF:

vascular endothelial growth factor

References

  1. Kiessling, A.A. and Anderson, S.C. Human embryonic stem cells. (Jonas and Bartlett), Boston (2003).

  2. Mitalipov, S. and Wolf, D. Totipotency, pluripotency and nuclear reprogramming. Adv. Biochem. Eng. Biotechnol. 114 (2009) 185–199.

    PubMed  CAS  Google Scholar 

  3. Solter, D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat. Rev. Genet. 7 (2006) 319–327.

    Article  PubMed  CAS  Google Scholar 

  4. Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P.R., Bellantuono, I. and Fisk, N.M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98 (2001) 2396–2402.

    Article  PubMed  CAS  Google Scholar 

  5. Witkowska-Zimny, M. and Walenko, K. Stem cells from adipose tissue. Cell Mol. Biol. Lett. 16 (2011) 236–257.

    Article  PubMed  Google Scholar 

  6. van de Ven, C., Collins, D., Bradley, M.B., Morris, E. and Cairo, M.S. The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Exp. Hematol. 35 (2007) 1753–1765.

    Article  PubMed  Google Scholar 

  7. Miao, Z., Jin, J., Chen, L., Zhu, J., Huang, W., Zhao, J., Qian, H. and Zhang, X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int. 30 (2006) 681–687.

    Article  PubMed  CAS  Google Scholar 

  8. Mizokami, T., Hisha, H., Okazaki, S., Takaki, T., Wang, X.L., Song, C.Y., Li, Q., Kato, J., Hosaka, N., Inaba, M., Kanzaki, H. and Ikehara, S. Preferential expansion of human umbilical cord blood-derived CD34-positive cells on major histocompatibility complex-matched amnion-derived mesenchymal stem cells. Haematologica 94 (2009) 618–628.

    Article  PubMed  Google Scholar 

  9. Romanov, Y.A., Svintsitskaya, V.A. and Smirnov, V.N. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21 (2003) 105–110.

    Article  PubMed  Google Scholar 

  10. Kobayashi, K., Kubota, T. and Aso, T. Study on myofibroblast differentiation in the stromal cells of Wharton’s jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev. 51 (1998) 223–233.

    Article  PubMed  CAS  Google Scholar 

  11. Mitchell, K.E., Weiss, M.L., Mitchell, B.M., Martin, P., Davis, D., Morales, L., Helwig, B., Beerenstrauch, M., Abou-Easa, K., Hildreth, T., Troyer, D. and Medicetty, S. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21 (2003) 50–60.

    Article  PubMed  CAS  Google Scholar 

  12. Weiss, M.L., Medicetty, S., Bledsoe, A.R., Rachakatla, R.S., Choi, M., Merchav, S., Luo, Y., Rao, M.S., Velagaleti, G. and Troyer, D. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24 (2006) 781–792.

    Article  PubMed  CAS  Google Scholar 

  13. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. and Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8 (2006) 315–317.

    Article  PubMed  CAS  Google Scholar 

  14. La Rocca, G., Anzalone, R. and Farina, F. The expression of CD68 in human umbilical cord mesenchymal stem cells: new evidences of presence in non-myeloid cell types. Scand. J. Immunol. 70 (2009) 161–162.

    Article  PubMed  Google Scholar 

  15. Weiss, M.L., Anderson, C., Medicetty, S., Seshareddy, K.B., Weiss, R.J., VanderWerff, I., Troyer, D. and McIntosh, K.R. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26 (2008) 2865–2874.

    Article  PubMed  CAS  Google Scholar 

  16. Troyer, D.L. and Weiss, M.L. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26 (2008) 591–599.

    Article  PubMed  Google Scholar 

  17. Fong, C.Y., Chak, L.L., Biswas, A., Tan, J.H., Gauthaman, K., Chan, W.K. and Bongso, A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell. Rev. 7 (2011) 1–16.

    Article  PubMed  CAS  Google Scholar 

  18. Fong, C.Y., Chak, L.L., Subramanian, A., Tan, J.H., Biswas, A., Gauthaman, K., Choolani, M., Chan, W.K. and Bongso, A. A three dimensional anchorage independent in vitro system for the prolonged growth of embryoid bodies to study cancer cell behaviour and anticancer agents. Stem Cell Rev. 5 (2009) 410–419.

    Article  PubMed  CAS  Google Scholar 

  19. Djouad, F., Charbonnier, L.M., Bouffi, C., Louis-Plence, P., Bony, C., Apparailly, F., Cantos, C., Jorgensen, C. and Noel, D. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25 (2007) 2025–2032.

    Article  PubMed  CAS  Google Scholar 

  20. La Rocca, G., Anzalone, R., Corrao, S., Magno, F., Loria, T., Lo Iacono, M., Di Stefano, A., Giannuzzi, P., Marasa, L., Cappello, F., Zummo, G. and Farina, F. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem. Cell Biol. 131 (2009) 267–282.

    Article  PubMed  Google Scholar 

  21. Le Blanc, K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5 (2003) 485–489.

    Article  PubMed  Google Scholar 

  22. Chen, K., Wang, D., Du, W.T., Han, Z.B., Ren, H., Chi, Y., Yang, S.G., Zhu, D., Bayard, F. and Han, Z.C. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin. Immunol. 135 (2010) 448–458.

    Article  PubMed  CAS  Google Scholar 

  23. Fong, C.Y., Richards, M., Manasi, N., Biswas, A. and Bongso, A. Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod. Biomed. Online 15 (2007) 708–718.

    Article  PubMed  CAS  Google Scholar 

  24. Ayuzawa, R., Doi, C., Rachakatla, R.S., Pyle, M.M., Maurya, D.K., Troyer, D. and Tamura, M. Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett. 280 (2009) 31–37.

    Article  PubMed  CAS  Google Scholar 

  25. Angelucci, S., Marchisio, M., Di Giuseppe, F., Pierdomenico, L., Sulpizio, M., Eleuterio, E., Lanuti, P., Sabatino, G., Miscia, S. and Di Ilio, C. Proteome analysis of human Wharton’s jelly cells during in vitro expansion. Proteome Sci. 8 (2010) 18.

    Article  PubMed  Google Scholar 

  26. Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C., Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C. and Chen, C.C. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22 (2004) 1330–1337.

    Article  PubMed  Google Scholar 

  27. Anzalone, R., Iacono, M.L., Corrao, S., Magno, F., Loria, T., Cappello, F., Zummo, G., Farina, F. and La Rocca, G. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev. 19 (2010) 423–438.

    Article  PubMed  CAS  Google Scholar 

  28. Anzalone, R., Lo Iacono, M., Loria, T., Di Stefano, A., Giannuzzi, P., Farina, F. and La Rocca, G., Wharton’s Jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev. 7 (2011) 342–363, DOI: 10.1007/s12015-010-9196-4.

    Article  PubMed  Google Scholar 

  29. Baksh, D., Yao, R. and Tuan, R.S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25 (2007) 1384–1392.

    Article  PubMed  CAS  Google Scholar 

  30. Hou, T., Xu, J., Wu, X., Xie, Z., Luo, F., Zhang, Z. and Zeng, L. Umbilical cord Wharton’s Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng. Part A 15 (2009) 2325–2334.

    Article  PubMed  CAS  Google Scholar 

  31. Hildebrandt, C., Buth, H. and Thielecke, H. Influence of cell culture media conditions on the osteogenic differentiation of cord blood-derived mesenchymal stem cells. Ann. Anat. 191 (2009) 23–32.

    Article  PubMed  Google Scholar 

  32. Schneider, R.K., Puellen, A., Kramann, R., Raupach, K., Bornemann, J., Knuechel, R., Perez-Bouza, A. and Neuss, S. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials 31 (2010) 467–480.

    Article  PubMed  CAS  Google Scholar 

  33. Penolazzi, L., Vecchiatini, R., Bignardi, S., Lambertini, E., Torreggiani, E., Canella, A., Franceschetti, T., Calura, G., Vesce, F. and Piva, R. Influence of obstetric factors on osteogenic potential of umbilical cord-derived mesenchymal stem cells. Reprod. Biol. Endocrinol. 7 (2009) DOI10.1186/1477-7827-7-106.

  34. Chen, M.Y., Lie, P.C., Li, Z.L. and Wei, X. Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp. Hematol. 37 (2009) 629–640.

    Article  PubMed  CAS  Google Scholar 

  35. Kadam, S.S., Tiwari, S. and Bhonde, R.R. Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord. In Vitro Cell Dev. Biol. Anim. 45 (2009) 23–27.

    Article  PubMed  Google Scholar 

  36. Tsai, P.C., Fu, T.W., Chen, Y.M., Ko, T.L., Chen, T.H., Shih, Y.H., Hung, S.C. and Fu, Y. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl. 15 (2009) 484–495.

    Article  PubMed  Google Scholar 

  37. Wang, H.S., Shyu, J.F., Shen, W.S., Hsu, H.C., Chi, T.C., Chen, C.P., Huang, S.W., Shyr, Y.M., Tang, K.T. and Chen, T.H. Transplantation of insulin producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant. (2010) DOI: 10.3727/096368910X522270.

  38. Lund, R.D., Wang, S., Lu, B., Girman, S., Holmes, T., Sauve, Y., Messina, D.J., Harris, I.R., Kihm, A.J., Harmon, A.M., Chin, F.Y., Gosiewska, A. and Mistry, S.K. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 25 (2007) 602–611.

    Article  PubMed  CAS  Google Scholar 

  39. Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C. and Klingemann, H. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol. Blood Marrow Transplant. 13 (2007) 1477–1486.

    Article  PubMed  Google Scholar 

  40. Malkowski, A., Sobolewski, K., Jaworski, S. and Bankowski, E. FGF binding by extracellular matrix components of Wharton’s jelly. Acta Biochim. Pol. 54 (2007) 357–363.

    PubMed  CAS  Google Scholar 

  41. Benirschke, K.K.P. Pathology of the human placenta. Springer-Verlag, New York (1995).

    Google Scholar 

  42. Horwitz, E.M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Deans, R.J., Krause, D.S. and Keating, A. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7 (2005) 393–395.

    Article  PubMed  CAS  Google Scholar 

  43. Miki, T., Lehmann, T., Cai, H., Stolz, D.B. and Strom, S.C. Stem cell characteristics of amniotic epithelial cells. Stem Cells 23 (2005) 1549–1559.

    Article  PubMed  CAS  Google Scholar 

  44. In ’t Anker, P.S., Scherjon, S.A., Kleijburg-van der Keur, C., de Groot-Swings, G.M., Claas, F.H., Fibbe, W.E. and Kanhai, H.H. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22 (2004) 1338–1345.

    Article  Google Scholar 

  45. Bilic, G., Zeisberger, S.M., Mallik, A.S., Zimmermann, R. and Zisch, A.H. Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant. 17 (2008) 955–968.

    Article  PubMed  Google Scholar 

  46. Alviano, F., Fossati, V., Marchionni, C., Arpinati, M., Bonsi, L., Franchina, M., Lanzoni, G., Cantoni, S., Cavallini, C., Bianchi, F., Tazzari, P.L., Pasquinelli, G., Foroni, L., Ventura, C., Grossi, A. and Bagnara, G.P. Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev. Biol. 7 (2007) DOI:10.1186/1471-213X-7-11.

  47. Zhang, Y., Adachi, Y., Suzuki, Y., Minamino, K., Iwasaki, M., Hisha, H., Song, C.Y., Kusafuka, K., Nakano, K., Koike, Y., Wang, J., Koh, E., Cui, Y., Li, C. and Ikehara, S. Simultaneous injection of bone marrow cells and stromal cells into bone marrow accelerates hematopoiesis in vivo. Stem Cells 22 (2004) 1256–1262.

    Article  PubMed  Google Scholar 

  48. Koizumi, N.J., Inatomi, T.J., Sotozono, C.J., Fullwood, N.J., Quantock, A.J. and Kinoshita, S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr. Eye. Res. 20 (2000) 173–177.

    PubMed  CAS  Google Scholar 

  49. Fauza, D. Amniotic fluid and placental stem cells. Best Pract. Res. Clin. Obstet. Gynaecol. 18 (2004) 877–891.

    Article  PubMed  Google Scholar 

  50. Guillot, P.V., O’Donoghue, K., Kurata, H. and Fisk, N.M. Fetal stem cells: betwixt and between. Semin. Reprod. Med. 24 (2006) 340–347.

    Article  PubMed  CAS  Google Scholar 

  51. Prusa, A.R. and Hengstschlager, M. Amniotic fluid cells and human stem cell research: a new connection. Med. Sci. Monit. 8 (2002) 253–257.

    Google Scholar 

  52. Tsai, M.S., Lee, J.L., Chang, Y.J. and Hwang, S.M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. 19 (2004) 1450–1456.

    Article  PubMed  Google Scholar 

  53. De Coppi, P., Bartsch, G., Jr., Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., Furth, M.E., Soker, S. and Atala, A. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25 (2007) 100–106.

    Article  PubMed  Google Scholar 

  54. Antonucci, I., Iezzi, I., Morizio, E., Mastrangelo, F., Pantalone, A., Mattioli-Belmonte, M., Gigante, A., Salini, V., Calabrese, G., Tete, S., Palka, G. and Stuppia, L. Isolation of osteogenic progenitors from human amniotic fluid using a single step culture protocol. BMC Biotechnol. 9 (2009) DOI:10.1186/1472-6750-9-9.

  55. Phermthai, T., Odglun, Y., Julavijitphong, S., Titapant, V., Chuenwattana, P., Vantanasiri, C. and Pattanapanyasat, K. A novel method to derive amniotic fluid stem cells for therapeutic purposes. BMC Cell Biol. 11 (2010) DOI: 10.1186/1471-2121-11-79.

  56. Prusa, A.R., Marton, E., Rosner, M., Bernaschek, G. and Hengstschlager, M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum. Reprod. 18 (2003) 1489–1493.

    Article  PubMed  Google Scholar 

  57. Schmidt, D., Achermann, J., Odermatt, B., Breymann, C., Mol, A., Genoni, M., Zund, G. and Hoerstrup, S.P. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation 116 (2007) 64–70.

    Article  Google Scholar 

  58. Tsai, M.S., Hwang, S.M., Tsai, Y.L., Cheng, F.C., Lee, J.L. and Chang, Y.J. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol. Reprod. 74 (2006) 545–551.

    Article  PubMed  CAS  Google Scholar 

  59. Klemmt, P.A., Vafaizadeh, V. and Groner, B. Murine amniotic fluid stem cells contribute mesenchymal but not epithelial components to reconstituted mammary ducts. Stem Cell Res. Ther. 1 (2010) DOI: 10.1186/scrt20.

  60. Chiavegato, A., Bollini, S., Pozzobon, M., Callegari, A., Gasparotto, L., Taiani, J., Piccoli, M., Lenzini, E., Gerosa, G., Vendramin, I., Cozzi, E., Angelini, A., Iop, L., Zanon, G.F., Atala, A., De Coppi, P. and Sartore, S. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immunodeficient rat. J. Mol. Cell Cardiol. 42 (2007) 746–759.

    Article  PubMed  CAS  Google Scholar 

  61. Dzierzak, E. and Robin, C. Placenta as a source of hematopoietic stem cells. Trends Mol. Med. 16 (2010) 361–367.

    Article  PubMed  CAS  Google Scholar 

  62. Zhang, Y., Li, C., Jiang, X., Zhang, S., Wu, Y., Liu, B., Tang, P. and Mao, N. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp. Hematol. 32 (2004) 657–664.

    Article  PubMed  CAS  Google Scholar 

  63. Portmann-Lanz, C.B., Schoeberlein, A., Huber, A., Sager, R., Malek, A., Holzgreve, W. and Surbek, D.V. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am. J. Obstet. Gynecol. 194 (2006) 664–673.

    Article  PubMed  CAS  Google Scholar 

  64. Soncini, M., Vertua, E., Gibelli, L., Zorzi, F., Denegri, M., Albertini, A., Wengler, G.S. and Parolini, O. Isolation and characterization of mesenchymal cells from human fetal membranes. J. Tissue Eng. Regen. Med. 1 (2007) 296–305.

    Article  PubMed  CAS  Google Scholar 

  65. Castrechini, N.M., Murthi, P., Gude, N.M., Erwich, J.J., Gronthos, S., Zannettino, A., Brennecke, S.P. and Kalionis, B. Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta 31 (2010) 203–212.

    Article  PubMed  CAS  Google Scholar 

  66. Fukuchi, Y., Nakajima, H., Sugiyama, D., Hirose, I., Kitamura, T. and Tsuji, K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22 (2004) 649–658.

    Article  PubMed  CAS  Google Scholar 

  67. Chien, C.C., Yen, B.L., Lee, F.K., Lai, T.H., Chen, Y.C., Chan, S.H. and Huang, H. I. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 24 (2006) 1759–1768.

    Article  PubMed  Google Scholar 

  68. Zhao, Y., Wang, H. and Mazzone, T. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp. Cell Res. 312 (2006) 2454–2464.

    Article  PubMed  CAS  Google Scholar 

  69. Poloni, A., Maurizi, G., Babini, L., Serrani, F., Berardinelli, E., Mancini, S., Costantini, B., Discepoli, G. and Leoni, P. Human mesenchymal stem cells from chorionic villi and amniotic fluid are not susceptible to transformation after extensive in vitro expansion. Cell Transplant. (2010) DOI: 10.3727/096368910X536518.

  70. Igura, K., Zhang, X., Takahashi, K., Mitsuru, A., Yamaguchi, S. and Takashi, T.A. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6 (2004) 543–553.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang, X., Mitsuru, A., Igura, K., Takahashi, K., Ichinose, S., Yamaguchi, S. and Takahashi, T.A. Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochem. Biophys. Res. Commun. 340 (2006) 944–952.

    Article  PubMed  CAS  Google Scholar 

  72. Cargnoni, A., Gibelli, L., Tosini, A., Signoroni, P. B., Nassuato, C., Arienti, D., Lombardi, G., Albertini, A., Wengler, G.S. and Parolini, O. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycininduced lung fibrosis. Cell Transplant. 18 (2009) 405–422.

    Article  PubMed  Google Scholar 

  73. Li, C., Zhang, W., Jiang, X. and Mao, N. Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell Tissue Res. 330 (2007) 437–446.

    Article  PubMed  Google Scholar 

  74. Kolambkar, Y.M., Peister, A., Soker, S., Atala, A. and Guldberg, R.E. Chondrogenic differentiation of amniotic fluid-derived stem cells. J. Mol. Histol. 38 (2007) 405–413.

    Article  PubMed  CAS  Google Scholar 

  75. Brooke, G., Rossetti, T., Pelekanos, R., Ilic, N., Murray, P., Hancock, S., Antonenas, V., Huang, G., Gottlieb, D., Bradstock, K. and Atkinson, K. Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Br. J. Haematol. 144 (2009) 571–579.

    Article  PubMed  Google Scholar 

  76. Ilancheran, S., Michalska, A., Peh, G., Wallace, E.M., Pera, M. and Manuelpillai, U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol. Reprod. 77 (2007) 577–588.

    Article  PubMed  CAS  Google Scholar 

  77. Zhao, P., Ise, H., Hongo, M., Ota, M., Konishi, I. and Nikaido, T. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79 (2005) 528–535.

    Article  PubMed  Google Scholar 

  78. Yeh, Y.C., Wei, H.J., Lee, W.Y., Yu, C.L., Chang, Y., Hsu, L.W., Chung, M.F., Tsai, M.S., Hwang, S.M. and Sung, H.W. Cellular cardiomyoplasty with human amniotic fluid stem cells: in vitro and in vivo studies. Tissue Eng. Part A 16 (2010) 1925–1936.

    Article  PubMed  CAS  Google Scholar 

  79. Yeh, Y.C., Lee, W.Y., Yu, C.L., Hwang, S.M., Chung, M.F., Hsu, L.W., Chang, Y., Lin, W.W., Tsai, M.S., Wei, H.J. and Sung, H.W. Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomaterials 31 (2010) 6444–6453.

    Article  PubMed  CAS  Google Scholar 

  80. Sakuragawa, N., Kakinuma, K., Kikuchi, A., Okano, H., Uchida, S., Kamo, I., Kobayashi, M. and Yokoyama, Y. Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J. Neurosci. Res. 78 (2004) 208–214.

    Article  PubMed  CAS  Google Scholar 

  81. Portmann-Lanz, C.B., Schoeberlein, A., Portmann, R., Mohr, S., Rollini, P., Sager, R. and Surbek, D.V. Turning placenta into brain: placental mesenchymal stem cells differentiate into neurons and oligodendrocytes. Am. J. Obstet. Gynecol. 202 (2010) 294e1–e11.

    Article  Google Scholar 

  82. Portmann-Lanz, C.B., Baumann, M.U., Mueller, M., Wagner, A.M., Weiss, S., Haller, O., Sager, R., Reinhart, U. and Surbek, D.V. Neurogenic characteristics of placental stem cells in preeclampsia. Am. J. Obstet. Gynecol. 203 (2010) 391–397.

    Article  Google Scholar 

  83. Prusa, A.R., Marton, E., Rosner, M., Bettelheim, D., Lubec, G., Pollack, A., Bernaschek, G. and Hengstschlager, M. Neurogenic cells in human amniotic fluid. Am. J. Obstet. Gynecol. 191 (2004) 309–314.

    Article  PubMed  Google Scholar 

  84. Yen, B.L., Chien, C. C., Chen, Y.C., Chen, J.T., Huang, J.S., Lee, F.K. and Huang, H.I. Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Eng. Part A 14 (2008) 9–17.

    Article  PubMed  CAS  Google Scholar 

  85. Wu, C.C., Chao, Y.C., Chen, C.N., Chien, S., Chen, Y.C., Chien, C.C., Chiu, J.J. and Linju Yen, B. Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. J. Biomech. 41 (2008) 813–821.

    Article  PubMed  Google Scholar 

  86. Campard, D., Lysy, P.A., Najimi, M. and Sokal, E.M. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocytelike cells. Gastroenterology 134 (2008) 833–848.

    Article  PubMed  CAS  Google Scholar 

  87. Tamagawa, T., Oi, S., Ishiwata, I., Ishikawa, H. and Nakamura, Y. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum. Cell 20 (2007) 77–84.

    Article  PubMed  Google Scholar 

  88. Saulnier, N., Lattanzi, W., Puglisi, M.A., Pani, G., Barba, M., Piscaglia, A. C., Giachelia, M., Alfieri, S., Neri, G., Gasbarrini, G. and Gasbarrini, A. Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur. Rev. Med. Pharmacol. Sci. 13 (2009) 71–78.

    PubMed  Google Scholar 

  89. Park, T.S., Gavina, M., Chen, C.W., Sun, B., Teng, P.N., Huard, J., Deasy, B.M., Zimmerlin, L. and Peault, B. Placental perivascular cells for human muscle regeneration. Stem Cells Dev. 20 (2011) 451–463.

    Article  PubMed  CAS  Google Scholar 

  90. Strom, S. and Miki, T. Placental derived stem cells and uses thereof, United States Patent Application Publications, (2003) US2003/0235563.

  91. Koch, C.A. and Platt, J.L. Natural mechanisms for evading graft rejection: the fetus as an allograft. Springer Semin. Immunopathol. 25 (2003) 95–117.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Witkowska-Zimny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witkowska-Zimny, M., Wrobel, E. Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell Mol Biol Lett 16, 493–514 (2011). https://doi.org/10.2478/s11658-011-0019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-011-0019-7

Key words