Skip to main content

Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime

Abstract

The interaction between a charged metal implant surface and a surrounding body fluid (electrolyte solution) leads to ion redistribution and thus to formation of an electrical double layer (EDL). The physical properties of the EDL contribute essentially to the formation of the complex implant-biosystem interface. Study of the EDL began in 1879 by Hermann von Helmholtz and still today remains a scientific challenge. The present mini review is focused on introducing the generalized Stern theory of an EDL, which takes into account the orientational ordering of water molecules. To ascertain the plausibility of the generalized Stern models described, we follow the classical model of Stern and introduce two Langevin models for spatial variation of the relative permittivity for point-like and finite sized ions. We attempt to uncover the subtle interplay between water ordering and finite sized ions and their impact on the electric potential near the charged implant surface. Two complementary effects appear to account for the spatial dependency of the relative permittivity near the charged implant surface — the dipole moment vectors of water molecules are predominantly oriented towards the surface and water molecules are depleted due to the accumulation of counterions. At the end the expressions for relative permittivity in both Langevin models were generalized by also taking into account the cavity and reaction field.

Abbreviations

EDL:

electric double layer

LBS model:

Langevin-Bikerman Stern model

LS model:

Langevin Stern model

OHP:

outer Helmholtz plane

PB:

Poisson-Boltzmann

References

  1. 1.

    Helmholtz, H. Studien über elektrische Grenzschichten. Ann. Phys. 7 (1879) 337–382.

    Google Scholar 

  2. 2.

    Gouy, M.G. Sur la constitution de la charge electrique à la surface d’un electrolyte. J. Physique (France) 9 (1910) 457–468.

    CAS  Google Scholar 

  3. 3.

    Chapman, D.L. A contribution to the theory of electrocapillarity. Philos. Mag. 25 (1913) 475–481.

    Google Scholar 

  4. 4.

    Stern, O. Zur Theorie der elektrolytischen Doppelschicht. Z. Elektrochemie 30 (1924) 508–516.

    CAS  Google Scholar 

  5. 5.

    Manciu, M. and Ruckenstein, E. The polarization model for hydration/double layer interactions: the role of the electrolyte ions. Adv. Coll. Int. Sci. 112 (2004) 109–128.

    Article  CAS  Google Scholar 

  6. 6.

    Gongadze, E., Bohinc, K., van Rienen, U., Kralj-Iglič, V. and Iglič, A. Spatial variation of permittivity near a charged membrane in contact with electrolyte solution, in: Advances in planar lipid bilayers and liposomes (Iglič, A. Ed.) 11th volume, Elsevier, 2010, 101–126.

  7. 7.

    Gongadze, E., van Rienen, U., Kralj-Iglič, V. and Iglič, A. Langevin Poisson-Boltzmann equation: point-like ions and water dipoles near charged membrane surface. Gen. Physiol. Biophys. 30 (2011) 130–137.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Outhwaite CW. Towards a mean electrostatic potential treatment of an iondipole mixture or a dipolar system next to a plane wall. Mol. Phys. 48 (1983) 599–614.

    Article  Google Scholar 

  9. 9.

    Bazant, M.Z., Kilic, M.S., Storey, B. and Ajdari, A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv Coll. Int. Sci. 152 (2009) 48–88.

    Article  CAS  Google Scholar 

  10. 10.

    Jackson, J.D. Classical electrodynamics. 3rd edition, Wiley and Son Inc., 1998.

  11. 11.

    Butt, H. J., Graf, K. and Kappl, M. Physics and chemistry of interfaces. 1st edition, Wiley-VCH Verlag, 2003.

  12. 12.

    McLaughlin, S. The electrostatic properties of membranes. Ann. Rev. Biophys. Chem. 18 (1989) 113–136.

    Article  CAS  Google Scholar 

  13. 13.

    Bikerman, J.J. Structure and capacity of the electrical double layer. Phil. Mag. 33 (1942) 384–397.

    CAS  Google Scholar 

  14. 14.

    Kralj-Iglič, V. Free energy of the electric double layer within the approximation of high electrolyte concentration. Electrotechnical Rev. 62 (1995) 104–108.

    Google Scholar 

  15. 15.

    Kralj-Iglič, V. and Iglič A. A simple statistical mechanical approach to the free energy of the electric double layer including the excluded volume effect. J. Phys. II 6 (1996) 477–491.

    Article  Google Scholar 

  16. 16.

    Lamperski, S. and Outhwaite, C.W. Exclusion volume term in the inhomogeneous Poisson-Boltzmann theory for high surface charge. Langmuir 18 (2002) 3423–3424.

    Article  CAS  Google Scholar 

  17. 17.

    Iglič, A., Gongadze, E. and Bohinc, K. Excluded volume effect and orientational ordering near charged surface in solution of ions and Langevin dipoles. Bioelectrochemistry 79 (2010) 223–227.

    PubMed  Article  Google Scholar 

  18. 18.

    Adams, D.J. Theory of the dielectric constant of ice. Nature 293 (1981) 447–449.

    Article  CAS  Google Scholar 

  19. 19.

    Dill, K.A. and Bromberg S. Molecular driving forces. Garland Science, 2003.

  20. 20.

    Fröhlich, H. Theory of dielectrics. Clarendon Press, 1964.

  21. 21.

    Franks, F. Water. A comprehensive treatise, vol. 1, The physics and physical chemistry of water, Plenum Press, 1972

  22. 22.

    Onsager, L. Electric moments of molecules in liquids. J. Am. Chem. Soc. 58 (1936) 1486–1493.

    Article  CAS  Google Scholar 

  23. 23.

    Kirkwood, J.G. The dielectric polarization of polar liquids. J. Chem. Phys. 7 (1939) 911–919.

    Article  CAS  Google Scholar 

  24. 24.

    Booth, F. The dielectric constant of water and the saturation effect. J. Chem. Phys. 19 (1951) 391–394.

    Article  CAS  Google Scholar 

  25. 25.

    Urbanija, J., Bohinc, K., Bellen, A., Maset, S., Iglič, A., Kralj-Iglič, V. and Kumar, P.B.S. Attraction between negatively charged surfaces mediated by spherical counterions with quadrupolar charge distribution. J. Chem. Phys. 129 (2008) 105101.

    PubMed  Article  Google Scholar 

  26. 26.

    Frank, M., Sodin-Šemrl, S., Rozman, B., Potočnik, M. and Kralj-Iglič, V. Effects of low-molecular-weight heparin on adhesion and vesiculation of phospholipid membranes — a possible mechanism for the treatment of hypercoagulability in antiphospholipid syndrome. Ann. N. Y. Acad. Sci. 1173 (2009) 874–886.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Zelko, J., Iglič, A., Kralj-Iglič, V. and Kumar, P.B.S. Effects of counterion size on the attraction between similarly charged surfaces. J. Chem. Phys. 133 (2010) 204901.

    PubMed  Article  Google Scholar 

  28. 28.

    Kabaso, D., Gongadze, E., Perutkova, Š., Kralj-Iglič, V., Matschegewski, C., Beck, U., van Rienen, U. and Iglič, A. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface. Comput. Meth. Biomech. Biomed. Eng. 14 (2011) 469–482.

    Article  CAS  Google Scholar 

  29. 29.

    Smeets, R., Kolk, A., Gerressen, M., Driemel, O., Maciejewski, O., Hermanns-Sachweh, B., Riediger, D. and Stein J. A new biphasic osteoinductive calcium composite material with a negative zeta potential for bone augmentation. Head Face Med. (2009) Available from: 5: 13 doi: 10.1186/1746-160X-5-13.

  30. 30.

    Heath, M.D., Henderson, B. and Perkin S. Ion-specific effects on the interaction between fibronectin and negatively charged mica surfaces. Langmuir 26 (2010) 5304–5308.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Teng, N.C., Nakamura, S., Takagi, Y., Yamashita, Y., Ohgaki, M. and Yamashita K. A new approach to enhancement of bone formation by electrically polarized hydroxyapatite. J. Dent. Res. 80 (2000) 1925–1929.

    Google Scholar 

  32. 32.

    Oghaki, M., Kizuki, T., Katsura, M. and Yamashita K. Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite. J. Biomed. Mater. Res. 57 (2001) 366–373.

    Article  Google Scholar 

  33. 33.

    Park, J., Bauer, S., Schlegel, K., Neukam, F., Mark, K. and Schmuki, P. TiO2 nanotube surfaces: 15 nm — an optimal length scale of surface topography for cell adhesion and differentiation. Small 5 (2009) 666–671.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Puckett, S., Pareta, R. and Webster T. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int. J. Nanomedicine 3 (2008) 229–241.

    PubMed  CAS  Google Scholar 

  35. 35.

    Gongadze, E., Kabaso, D., Bauer, S., Slivnik, T., Schmuki, P., van Rienen, U., Iglič, A. Adhesion of osteoblasts to a nanorough titanium implant surface. Int. J. Nanomedicine 6 (2011) in press

  36. 36.

    Schara, K., Janša, V., Šuštar, V., Dolinar, D., Pavlič, J.I., Lokar, M., Kralj-Iglič, V., Veranič, P., Iglič, A. Mechanisms for the formation of membranous nanostructures in cell-to-cell communication. Cell. Mol. Biol. Lett. 14 (2009) 636–656.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aleš Iglič.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gongadze, E., Van Rienen, U. & Iglič, A. Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime. Cell Mol Biol Lett 16, 576 (2011). https://doi.org/10.2478/s11658-011-0024-x

Download citation

Key words

  • Spatial variation of permittivity
  • Generalized Stern models
  • Water dipoles
  • Charged implant surface
  • Osteoblasts
  • Cell-implant interactions
  • Langevin model
  • Langevin-Bikerman model
  • Booth model
  • Gongadze-Iglič model