Skip to main content
  • Research Article
  • Published:

Inhibitor-2 induced M-phase arrest in Xenopus cycling egg extracts is dependent on MAPK activation

Abstract

The evolutionarily-conserved protein phosphatase 1 (PP1) plays a central role in dephosphorylation of phosphoproteins during the M phase of the cell cycle. We demonstrate here that the PP1 inhibitor inhibitor-2 protein (Inh-2) induces an M-phase arrest in Xenopus cycling egg extracts. Interestingly, the characteristics of this M-phase arrest are similar to those of mitogen-activated protein kinase (p42MAPK)-induced M-phase arrest. This prompted us to investigate whether Inh-2-induced M-phase arrest was dependent on activation of the p42MAPK pathway. We demonstrate here that MAPK activity is required for Inh-2-induced M-phase arrest, as inhibition of MAPK by PD98059 allowed cycling extracts to exit M phase, despite the presence of Inh-2. We next investigated whether Inh-2 phosphorylation by the MAPK pathway was required to induce an M-phase arrest. We discovered that while p90Rsk (a MAPK protein required for M-phase arrest) is able to phosphorylate Inh-2, this phosphorylation is not required for Inh-2 function. Overall, our results suggest a novel mechanism linking p42MAPK and PP1 pathways during M phase of the cell cycle.

Abbreviations

CC:

chromosome condensation

CSF:

cytostatic factor

DIC:

differential interference contrast

DMSO:

dimethyl sulfoxide

EGS:

ethylene glycolbis(succinic acid N-hydrosysuccinimide ester)

Inh-2:

inhibitor-2

MAPK:

mitogenactivated protein kinase

MEK:

MAPK/extracellular signal-regulated kinase kinase

NEBD:

nuclear envelope breakdown

PKA:

protein kinase A

p90Rsk-1:

p90 ribosomal S6 kinase-1

SAC:

spindle assembly checkpoint

References

  1. Masui, Y. and Markert, C.L. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177 (1971) 129–145.

    Article  PubMed  CAS  Google Scholar 

  2. Ferrell, J.E., Jr. Building a cellular switch: More lessons from a good egg. Bioessays 21 (1999) 866–870.

    Article  PubMed  Google Scholar 

  3. Minshull, J., Sun, H., Tonks, N.K. and Murray, A.W. A MAP kinasedependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79 (1994) 475–486.

    Article  PubMed  CAS  Google Scholar 

  4. Walter, S.A., Guadagno, T.M. and Ferrell, J.E., Jr. Induction of a G2-phase arrest in Xenopus egg extracts by activation of p42 mitogen-activated protein kinase. Mol. Biol. Cell 8 (1997) 2157–2169.

    PubMed  CAS  Google Scholar 

  5. Bitangcol, J.C., Chau, A.S., Stadnick, E., Lohka, M.J., Dicken, B. and Shibuya, E.K. Activation of the p42 mitogen-activated protein kinase pathway inhibits cdc2 activation and entry into M-phase in cycling Xenopus egg extracts. Mol. Biol. Cell 9 (1998) 451–467.

    PubMed  CAS  Google Scholar 

  6. Chau, A.S. and Shibuya, E.K. Mos-induced p42 mitogen-activated protein kinase activation stabilizes M-phase in Xenopus egg extracts after cyclin destruction. Biol. Cell. 90 (1998) 565–572.

    Article  PubMed  CAS  Google Scholar 

  7. Chau, A.S. and Shibuya, E.K. Inactivation of p42 mitogen-activated protein kinase is required for exit from M-phase after cyclin destruction. J. Biol. Chem. 274 (1999) 32085–32090.

    Article  PubMed  CAS  Google Scholar 

  8. Bhatt, R.R. and Ferrell, J.E., Jr. The protein kinase p90 rsk as an essential mediator of cytostatic factor activity. Science 286 (1999) 1362–1365.

    Article  PubMed  CAS  Google Scholar 

  9. Gross, S.D., Schwab, M.S., Lewellyn, A.L. and Maller, J.L. Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science 286 (1999) 1365–1367.

    Article  PubMed  CAS  Google Scholar 

  10. Cohen, P.T. Protein phosphatase 1—targeted in many directions. J. Cell Sci. 115 (2002) 241–256.

    PubMed  CAS  Google Scholar 

  11. Antoniw, J.F. and Cohen, P. Separation of two phosphorylase kinase phosphatases from rabbit skeletal muscle. Eur. J. Biochem. 68 (1976) 45–54.

    Article  PubMed  CAS  Google Scholar 

  12. Doonan, J.H. and Morris, N.R. The bimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homolog of mammalian phosphoprotein phosphatase 1. Cell 57 (1989) 987–996.

    Article  PubMed  CAS  Google Scholar 

  13. Ohkura, H., Adachi, Y., Kinoshita, N., Niwa, O., Toda, T. and Yanagida, M. Cold-sensitive and caffeine-supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis. EMBO J. 7 (1988) 1465–1473.

    PubMed  CAS  Google Scholar 

  14. Ohkura, H., Kinoshita, N., Miyatani, S., Toda, T. and Yanagida, M. The fission yeast dis2+ gene required for chromosome disjoining encodes one of two putative type 1 protein phosphatases. Cell 57 (1989) 997–1007.

    Article  PubMed  CAS  Google Scholar 

  15. Ishii, K., Kumada, K., Toda, T. and Yanagida, M. Requirement for PP1 phosphatase and 20S cyclosome/apc for the onset of anaphase is lessened by the dosage increase of a novel gene sds23+. EMBO J. 15 (1996) 6629–6640.

    PubMed  CAS  Google Scholar 

  16. Hisamoto, N., Sugimoto, K. and Matsumoto, K. The Glc7 type 1 protein phosphatase of Saccharomyces cerevisiae is required for cell cycle progression in G2/M. Mol. Cell. Biol. 14 (1994) 3158–3165.

    PubMed  CAS  Google Scholar 

  17. Vanoosthuyse, V. and Hardwick, K.G. A novel protein phosphatase 1-dependent spindle checkpoint silencing mechanism. Curr. Biol. 19 (2009) 1176–1181.

    Article  PubMed  CAS  Google Scholar 

  18. Pinsky, B.A., Nelson, C.R. and Biggins, S. Protein phosphatase 1 regulates exit from the spindle checkpoint in budding yeast. Curr. Biol. 19 (2009) 1182–1187.

    Article  PubMed  CAS  Google Scholar 

  19. Fernandez, A., Brautigan, D.L. and Lamb, N.J. Protein phosphatase type 1 in mammalian cell mitosis: Chromosomal localization and involvement in mitotic exit. J. Cell Biol. 116 (1992) 1421–1430.

    Article  PubMed  CAS  Google Scholar 

  20. Wu, J.Q., Guo, J.Y., Tang, W., Yang, C.S., Freel, C.D., Chen, C., Nairn, A.C. and Kornbluth, S. PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation. Nat. Cell Biol. 11 (2009) 644–651.

    Article  PubMed  CAS  Google Scholar 

  21. Eto, M., Leach, C., Tountas, N.A. and Brautigan, D.L. Phosphoprotein inhibitors of protein phosphatase-1. Methods Enzymol. 366 (2003) 243–260.

    PubMed  CAS  Google Scholar 

  22. Huang, F.L. and Glinsmann, W.H. Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Eur. J. Biochem. 70 (1976) 419–426.

    Article  PubMed  CAS  Google Scholar 

  23. Hemmings, B.A., Resink, T.J. and Cohen, P. Reconstitution of a Mg-ATPdependent protein phosphatase and its activation through a phosphorylation mechanism. FEBS Lett. 150 (1982) 319–324.

    Article  PubMed  CAS  Google Scholar 

  24. Resink, T.J., Hemmings, B.A., Tung, H.Y. and Cohen, P. Characterisation of a reconstituted Mg-ATP-dependent protein phosphatase. Eur. J. Biochem. 133 (1983) 455–461.

    Article  PubMed  CAS  Google Scholar 

  25. DePaoli-Roach, A.A. Synergistic phosphorylation and activation of ATPMg-dependent phosphoprotein phosphatase by F A/GSK-3 and casein kinase II (PC0.7). J. Biol. Chem. 259 (1984) 12144–12152.

    PubMed  CAS  Google Scholar 

  26. Wang, Q.M., Guan, K.L., Roach, P.J. and DePaoli-Roach, A.A. Phosphorylation and activation of the ATP-Mg-dependent protein phosphatase by the mitogen-activated protein kinase. J. Biol. Chem. 270 (1995) 18352–18358.

    Article  PubMed  CAS  Google Scholar 

  27. Ballou, L.M., Brautigan, D.L. and Fischer, E.H. Subunit structure and activation of inactive phosphorylase phosphatase. Biochemistry 22 (1983) 3393–3399.

    Article  PubMed  CAS  Google Scholar 

  28. Aitken, A., Hemmings, B.A. and Hofmann, F. Identification of the residues on cyclic GMP-dependent protein kinase that are autophosphorylated in the presence of cyclic AMP and cyclic GMP. Biochim. Biophys. Acta 790 (1984) 219–225.

    Article  PubMed  CAS  Google Scholar 

  29. Li, M., Stefansson, B., Wang, W., Schaefer, E.M. and Brautigan, D.L. Phosphorylation of the Pro-X-Thr-Pro site in phosphatase inhibitor-2 by cyclin-dependent protein kinase during M-phase of the cell cycle. Cell Signal. 18 (2006) 1318–1326.

    Article  PubMed  CAS  Google Scholar 

  30. Leach, C., Shenolikar, S. and Brautigan, D.L. Phosphorylation of phosphatase inhibitor-2 at centrosomes during mitosis. J. Biol. Chem. 278 (2003) 26015–26020.

    Article  PubMed  CAS  Google Scholar 

  31. Brautigan, D.L., Sunwoo, J., Labbe, J.C., Fernandez, A. and Lamb, N.J. Cell cycle oscillation of phosphatase inhibitor-2 in rat fibroblasts coincident with p34cdc2 restriction. Nature 344 (1990) 74–78.

    Article  PubMed  CAS  Google Scholar 

  32. Walker, D.H., DePaoli-Roach, A.A. and Maller, J.L. Multiple roles for protein phosphatase 1 in regulating the Xenopus early embryonic cell cycle. Mol. Biol. Cell 3 (1992) 687–698.

    PubMed  CAS  Google Scholar 

  33. Satinover, D.L., Brautigan, D.L. and Stukenberg, P.T. Aurora-A kinase and inhibitor-2 regulate the cyclin threshold for mitotic entry in Xenopus early embryonic cell cycles. Cell Cycle 5 (2006) 2268–2274.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, W., Stukenberg, P.T. and Brautigan, D.L. Phosphatase inhibitor-2 balances protein phosphatase 1 and aurora B kinase for chromosome segregation and cytokinesis in human retinal epithelial cells. Mol. Biol. Cell. 19 (2008) 4852–4862.

    Article  PubMed  CAS  Google Scholar 

  35. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature 227 (1970) 680–685.

    Article  PubMed  CAS  Google Scholar 

  36. Druker, B.J., Mamon, H.J. and Roberts, T.M. Oncogenes, growth factors, and signal transduction. N. Engl. J. Med. 321 (1989) 1383–1391.

    Article  PubMed  CAS  Google Scholar 

  37. van der Velden, H.M. and Lohka, M.J. Mitotic arrest caused by the amino terminus of Xenopus cyclin B2. Mol. Cell Biol. 13 (1993) 1480–1488.

    PubMed  Google Scholar 

  38. Erikson, E. and Maller, J.L. A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc. Natl. Acad. Sci. USA 82 (1985) 742–746.

    Article  PubMed  CAS  Google Scholar 

  39. Lohka, M.J., Hayes, M.K. and Maller, J.L. Purification of maturationpromoting factor, an intracellular regulator of early mitotic events. Proc. Natl. Acad. Sci. USA 85 (1988) 3009–3013.

    Article  PubMed  CAS  Google Scholar 

  40. Guadagno, T.M. and Ferrell, J.E., Jr. Requirement for MAPK activation for normal mitotic progression in Xenopus egg extracts. Science 282 (1998) 1312–1315.

    Article  PubMed  CAS  Google Scholar 

  41. Takenaka, K., Gotoh, Y. and Nishida, E. Map kinase is required for the spindle assembly checkpoint but is dispensable for the normal M phase entry and exit in Xenopus egg cell cycle extracts. J. Cell Biol. 136 (1997) 1091–1097.

    Article  PubMed  CAS  Google Scholar 

  42. Alessi, D.R., Cuenda, A., Cohen, P., Dudley, D.T. and Saltiel, A.R. PD098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270 (1995) 27489–27494.

    Article  PubMed  CAS  Google Scholar 

  43. Dudley, D.T., Pang, L., Decker, S.J., Bridges, A.J. and Saltiel, A.R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92 (1995) 7686–7689.

    Article  PubMed  CAS  Google Scholar 

  44. Bottorff, D., Stang, S., Agellon, S. and Stone, J.C. Ras signalling is abnormal in a c-raf1 MEK1 double mutant. Mol. Cell Biol. 15 (1995) 5113–5122.

    PubMed  CAS  Google Scholar 

  45. Leighton, I.A., Dalby, K.N., Caudwell, F.B., Cohen, P.T. and Cohen, P. Comparison of the specificities of p70 S6 kinase and MAPKAP kinase-1 identifies a relatively specific substrate for p70 S6 kinase: The N-terminal kinase domain of MAPKAP kinase-1 is essential for peptide phosphorylation. FEBS Lett. 375 (1995) 289–293.

    Article  PubMed  CAS  Google Scholar 

  46. Tournebize, R., Andersen, S.S., Verde, F., Doree, M., Karsenti, E. and Hyman, A.A. Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO J. 16 (1997) 5537–5549.

    Article  PubMed  CAS  Google Scholar 

  47. Vorlaufer, E. and Peters, J.M. Regulation of the cyclin B degradation system by an inhibitor of mitotic proteolysis. Mol. Biol. Cell 9 (1998) 1817–1831.

    PubMed  CAS  Google Scholar 

  48. Sohaskey, M.L. and Ferrell, J.E., Jr. Distinct, constitutively active MAPK phosphatases function in Xenopus oocytes: Implications for p42 MAPK regulation in vivo. Mol. Biol. Cell 10 (1999) 3729–3743.

    PubMed  CAS  Google Scholar 

  49. Wu, J.Q. and Kornbluth, S. Across the meiotic divide - CSF activity in the post-Emi2/XErp1 era. J. Cell Sci. 121 (2008) 3509–3514.

    Article  PubMed  CAS  Google Scholar 

  50. Maller, J.L., Schwab, M.S., Gross, S.D., Taieb, F.E., Roberts, B.T. and Tunquist, B.J. The mechanism of CSF arrest in vertebrate oocytes. Mol. Cell. Endocrinol. 187 (2002) 173–178.

    Article  PubMed  CAS  Google Scholar 

  51. Chun, J., Chau, A.S., Maingat, F.G., Edmonds, S.D., Ostergaard, H.L. and Shibuya, E.K. Phosphorylation of Cdc25C by pp90Rsk contributes to a G2 cell cycle arrest in Xenopus cycling egg extracts. Cell Cycle 4 (2005) 148–154.

    Article  PubMed  CAS  Google Scholar 

  52. Li, M., Stukenberg, P.T. and Brautigan, D.L. Binding of phosphatase inhibitor-2 to prolyl isomerase Pin1 modifies specificity for mitotic phosphoproteins. Biochemistry 47 (2008) 292–300.

    Article  PubMed  CAS  Google Scholar 

  53. Satinover, D.L., Leach, C.A., Stukenberg, P.T. and Brautigan, D.L. Activation of Aurora-A kinase by protein phosphatase inhibitor-2, a bifunctional signaling protein. Proc. Natl. Acad. Sci. USA 101 (2004) 8625–8630.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arian Khandani.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khandani, A., Mohtashami, M. & Camirand, A. Inhibitor-2 induced M-phase arrest in Xenopus cycling egg extracts is dependent on MAPK activation. Cell Mol Biol Lett 16, 669 (2011). https://doi.org/10.2478/s11658-011-0030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.2478/s11658-011-0030-z

Key words