Skip to main content

Roles of the NFκB and glutathione pathways in mature human erythrocytes

Abstract

Anucleated erythrocytes were long considered as oxygen-transporting cells with limited regulatory functions. Components of different nuclear signaling pathways have not been investigated in those cells, yet. Surprisingly, we repeatedly found significant amounts of transcription factors in purified erythrocyte preparations, i.e. nuclear factor κB (NFκB), and major components of the canonical NFκB signaling pathway. To investigate the functional role of NFκB signaling, the effects of the preclinical compounds Bay 11-7082 and parthenolide on the survival of highly purified erythrocytes were investigated. Interestingly, both inhibitors of the NFκB pathway triggered erythrocyte programmed cell death as demonstrated by enhanced phospholipid scrambling (phosphatidylserine exposure) and cell shrinkage. Anucleated erythrocytes are an ideal cellular model allowing the study of nongenomic mechanisms contributing to suicidal cell death. As NFκB inhibitors might also interfere with the anti-oxidative defense systems of the cell, we measured the levels of reduced glutathione (GSH) after challenge with the inhibitors. Indeed, incubation of erythrocytes with Bay 11-7082 clearly decreased erythrocyte GSH levels. In conclusion, the pharmacological inhibitors of the NFκB pathway Bay 11-7082 and parthenolide interfere with the survival of erythrocytes involving mechanisms other than disruption of NFκB-dependent gene expression. Besides affecting erythrocyte survival, NFκB inhibition and induction of erythrocyte phosphatidylserine exposure may influence blood clotting. Future studies will be aimed at discriminating between NFκB-dependent and NFκB-independent GSH-mediated effects of Bay 11-7082 and parthenolide on erythrocyte death.

Abbreviations

Ca2+ :

calcium

ERK2:

extracellular signal-regulated kinase 2

GPIIb/IIIa:

glycoprotein IIb/IIIa

GSH:

reduced glutathione

ICAM-1:

inter-cellular adhesion molecule

IFN-γ:

interferon-γ

IκB-α:

inhibitor of kappaB

IKK-α:

IκB kinase-α

IL-6:

interleukin-6

IL-8:

interleukin-8

JNK1:

c-Jun N-terminal kinase 1

NFκB:

nuclear factor κB

PS:

phosphatidylserine

R:

putative phosphatidylserine receptor

References

  1. 1.

    Sen, R. and Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46 (1986) 705–716.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Ghosh, S. and Karin, M. Missing pieces in the NF-kappaB puzzle. Cell 109Suppl (2002) S81–S96.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Hayden, M.S. and Ghosh, S. Signaling to NF-kappaB. Genes Dev. 18 (2004) 2195–2224.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Hayden, M.S. and Ghosh, S. NF-kappaB in immunobiology. Cell. Res. 21 (2011) 223–244.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Sun, S.C. Non-canonical NF-kappaB signaling pathway. Cell. Res. 21 (2011) 71–85.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Ghashghaeinia, M., Toulany, M., Saki, M., Bobbala, D., Fehrenbacher, B., Rupec, R., Rodemann, H.P., Ghoreschi, K., Rocken, M., Schaller, M., Lang, F. and Wieder, T. The NFkB pathway inhibitors Bay 11-7082 and parthenolide induce programmed cell death in anucleated Erythrocytes. Cell. Physiol. Biochem. 27 (2011) 45–54.

    PubMed  CAS  Google Scholar 

  7. 7.

    Neelam, S., Kakhniashvili, D.G., Wilkens, S., Levene, S.D. and Goodman, S.R. Functional 20S proteasomes in mature human red blood cells. Exp. Biol. Med. (Maywood.) 236 (2011) 580–591.

    Article  CAS  Google Scholar 

  8. 8.

    Gilmore, T.D. and Herscovitch, M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 25 (2006) 6887–6899.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Pierce, J.W., Schoenleber, R., Jesmok, G., Best, J., Moore, S.A., Collins, T. and Gerritsen, M.E. Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J. Biol. Chem. 272 (1997) 21096–21103.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Kwok, B.H., Koh, B., Ndubuisi, M.I., Elofsson, M. and Crews, C.M. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem. Biol. 8 (2001) 759–766.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Garcia-Pineres, A.J., Castro, V., Mora, G., Schmid, t T.J., Strunck, E., Pahl, H.L. and Merfort, I. Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J. Biol. Chem. 276 (2001) 39713–39720.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Garcia-Pineres, A.J., Lindenmeyer, M.T. and Merfort, I. Role of cysteine residues of p65/NF-kappaB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential. Life Sci. 75 (2004) 841–856.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Wagner, S., Hofmann, A., Siedle, B., Terfloth, L., Merfort, I. and Gasteiger, J. Development of a structural model for NF-kappaB inhibition of sesquiterpene lactones using self-organizing neural networks. J. Med. Chem. 49 (2006) 2241–2252.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Foller, M., Bobbala, D., Koka, S., Huber, S.M., Gulbins, E. and Lang, F. Suicide for survival—death of infected erythrocytes as a host mechanism to survive malaria. Cell. Physiol. Biochem. 24 (2009) 133–140.

    PubMed  Article  Google Scholar 

  15. 15.

    Lang, F., Lang, K.S., Lang, P.A., Huber, S.M. and Wieder, T. Mechanisms and significance of eryptosis. Antioxid. Redox. Signal. 8 (2006) 1183–1192.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Lang, F., Gulbins, E., Lang, P.A., Zappulla, D. and Foller, M. Ceramide in suicidal death of erythrocytes. Cell. Physiol. Biochem. 26 (2010) 21–28.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Koprowska, K. and Czyz, M. Molecular mechanisms of parthenolide’s action: Old drug with a new face. Postepy Hig. Med. Dosw. 64 (2010) 100–114.

    Google Scholar 

  18. 18.

    Wen, J., You, K.R., Lee, S.Y., Song, C.H. and Kim, D.G. Oxidative stressmediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide. J. Biol. Chem. 277 (2002) 38954–38964.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Zhang, S., Ong, C.N. and Shen, H.M. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett. 208 (2004) 143–153.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Pasparakis, M., Luedde, T. and Schmidt-Supprian, M. Dissection of the NF-kappaB signalling cascade in transgenic and knockout mice. Cell Death Differ. 13 (2006) 861–872.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Snapper, C.M., Zelazowski, P., Rosas, F.R., Kehry, M.R., Tian, M., Baltimore, D. and Sha, W.C. B cells from p50/NF-kappa B knockout mice have selective defects in proliferation, differentiation, germ-line CH transcription, and Ig class switching. J. Immunol. 156 (1996) 183–191.

    PubMed  CAS  Google Scholar 

  22. 22.

    Spinelli, S.L., Casey, A.E., Pollock, S.J., Gertz, J.M., McMillan, D.H., Narasipura, S.D., Mody, N.A., King, M.R., Maggirwar, S.B., Francis, C.W., Taubman, M.B., Blumberg, N. and Phipps, R.P. Platelets and megakaryocytes contain functional nuclear factor-kappaB. Arterioscler. Thromb. Vasc. Biol. 30 (2010) 591–598.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Morel, O., Jesel, L., Freyssinet, J.M. and Toti, F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler. Thromb. Vasc. Biol. 31 (2011) 15–26.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Malaver, E., Romaniuk, M.A., D’Atri, L.P., Pozner, R.G., Negrotto, S., Benzadon, R. and Schattner, M. NF-kappaB inhibitors impair platelet activation responses. J. Thromb. Haemost. 7 (2009) 1333–1343.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Lee, H.S., Kim, S.D., Lee, W.M., Endale, M., Kamruzzaman, S.M., Oh, W.J., Cho, J.Y., Kim, S.K., Cho, H.J., Park, H.J. and Rhee, M.H. A noble function of BAY 11-7082: Inhibition of platelet aggregation mediated by an elevated cAMP-induced VASP, and decreased ERK2/JNK1 phosphorylations. Eur. J. Pharmacol. 627 (2010) 85–91.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Guo, M., Sahni, S.K., Sahni, A. and Francis, C.W. Fibrinogen regulates the expression of inflammatory chemokines through NF-kappaB activation of endothelial cells. Thromb. Haemost. 92 (2004) 858–866.

    PubMed  CAS  Google Scholar 

  27. 27.

    Sahler, J., Bernard, J.J., Spinelli, S.L., Blumberg, N. and Phipps, R.P. The Feverfew plant-derived compound, parthenolide enhances platelet production and attenuates platelet activation through NF-kappaB inhibition. Thromb. Res. 127 (2011) 426–434.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Groenewegen, W.A. and Heptinstall, S. A comparison of the effects of an extract of feverfew and parthenolide, a component of feverfew, on human platelet activity in-vitro. J. Pharm. Pharmacol. 42 (1990) 553–557.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Matsuda, S., Ikeda, Y., Aoki, M., Toyama, K., Watanabe, K. and Ando, Y. Role of reduced glutathione on platelet functions. Thromb. Haemost. 42 (1979) 1324–1331.

    PubMed  CAS  Google Scholar 

  30. 30.

    Fadok, V.A., Bratton, D.L., Rose, D.M., Pearson, A., Ezekewitz, R.A. and Henson, P.M. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405 (2000) 85–90.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Steffen, P., Jung, A., Nguyen, D.B., Muller, T., Bernhardt, I., Kaestner, L. and Wagner, C. Stimulation of human red blood cells leads to Ca(2+)-mediated intercellular adhesion. Cell. Calcium 50 (2011) 54–61.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kaestner, L., Tabellion, W., Lipp, P. and Bernhardt, I. Prostaglandin E2 activates channel-mediated calcium entry in human erythrocytes: an indication for a blood clot formation supporting process. Thromb. Haemost. 92 (2004) 1269–1272.

    PubMed  CAS  Google Scholar 

  33. 33.

    Lang, K.S., Roll, B., Myssina, S., Schittenhelm, M., Scheel-Walter, H.G., Kanz, L., Fritz, J., Lang, F., Huber, S.M. and Wieder, T. Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell. Physiol. Biochem. 12 (2002) 365–372.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Lang, P.A., Kasinathan, R.S., Brand, V.B., Duranton, C., Lang, C., Koka, S., Shumilina, E., Kempe, D.S., Tanneur, V., Akel, A., Lang, K.S., Foller, M., Kun, J.F., Kremsner, P.G., Wesselborg, S., Laufer, S., Clemen, C.S., Herr, C., Noegel, A.A., Wieder, T., Gulbins, E., Lang, F. and Huber, S.M. Accelerated clearance of Plasmodium-infected erythrocytes in sickle cell trait and annexin-A7 deficiency. Cell. Physiol. Biochem. 24 (2009) 415–428.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Dangel, O. [Wirkung von Stickstoffmonoxid auf die Thrombozytenfunktion von Guanylyl-Cyclase defizienten Mäusen. Lehrstuhl für Pharmakologie und Toxikologie der Fakultät für Medizin] Bochum (2007) 24.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Additional information

Paper authored by participants of the international conference: 18th Meeting, European Association for Red Cell Research, Wrocław — Piechowice, Poland, May 12–15th, 2011. Publication cost was covered by the organizers of this meeting.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghashghaeinia, M., Toulany, M., Saki, M. et al. Roles of the NFκB and glutathione pathways in mature human erythrocytes. Cell Mol Biol Lett 17, 11–20 (2012). https://doi.org/10.2478/s11658-011-0032-x

Download citation

Key words

  • Eryptosis
  • Nuclear factor kappa B
  • NFκB
  • IKK-α
  • IκB-α
  • Bay 11-7082
  • Parthenolide