Skip to main content
  • Research Article
  • Published:

Thy28 partially prevents apoptosis induction following engagement of membrane immunoglobulin in WEHI-231 B lymphoma cells

Abstract

Thy28 protein is conserved among plants, bacteria, and mammalian cells. Nuclear Thy28 protein is substantially expressed in testis, liver, and immune cells such as lymphocytes. Lymphocyte apoptosis plays a crucial role in homeostasis and formation of a diverse lymphocyte repertoire. In this study, we examined whether Thy28 affects induction of apoptosis in WEHI-231 B lymphoma cells following engagement of membrane immunoglobulin (mIg). Once they were established, the Thy28-overexpressing WEHI-231 cells showed similar expression levels of IgM and class I major histocompatibility complex (MHC) molecule compared with controls. The Thy28-overexpressing cells were considerably resistant to loss of mitochondrial membrane potential (ΔΨm), caspase-3 activation, and increase in annexin-positive cells upon mIg engagement. These changes were concomitant with an increase in G1 phase associated with upregulation of p27Kip1. The anti-IgM-induced sustained activation of c-Jun N-terminal kinase (JNK), which was associated with late-phase hydrogen peroxide (H2O2) production, was partially reduced in the Thy28-expressing cells relative to controls. Taken together, the data suggest that in WEHI-231 B lymphoma cells, Thy28 regulates mIg-mediated apoptotic events through the JNK-H2O2 activation pathway, concomitant with an accumulation of cells in G1 phase associated with upregulation of p27Kip1 in WEHI-231 B lymphoma cells.

Abbreviations

Abs:

antibodies

FSC:

forward scatter

H2O2 :

hydrogen peroxide

JNK:

prolonged c-Jun N-terminal kinase

MAPKs:

mitogen-activated protein kinases

mIg:

membrane immunoglobulin

SSC:

side scatter

References

  1. Miyaji, H., Yoshimoto, T., Asakura, H., Komachi, A., Takasaki, M. and Mizuguchi, J. Molecular cloning and characterization of the mouse thymocyte protein gene. Gene 297 (2002) 189–196.

    Article  PubMed  CAS  Google Scholar 

  2. Compton, M.M., Thomson, J. M. and Icard, A.H. The analysis of cThy28 expression in avian lymphocytes. Apoptosis 6 (2001) 299–314.

    Article  PubMed  CAS  Google Scholar 

  3. Jiang, X., Toyota, H., Takada, E., Yoshimoto, T., Kitamura, T., Yamada, J. and Mizuguchi, J. Modulation of mThy28 nuclear protein expression during thymocyte development. Tissue Cell 35 (2003) 471–478.

    Article  PubMed  CAS  Google Scholar 

  4. Opferman, J.T. and Korsmeyer, S.J. Apoptosis in the development and maintenance of the immune system. Nat. Immunol. 4 (2003) 410–415.

    Article  PubMed  CAS  Google Scholar 

  5. Goodnow, C.C., Sprent, J., Fazekas de St Groth, B. and Vinuesa, C.G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435 (2005) 590–597.

    Article  PubMed  CAS  Google Scholar 

  6. Scott, D.W., Livnat, D., Pennell, C.A. and Keng, P. Lymphoma models for B cell activation and tolerance. III. Cell cycle dependence for negative signalling of WEHI-231 B lymphoma cells by anti-mu. J. Exp. Med. 164 (1986) 156–164.

    Article  PubMed  CAS  Google Scholar 

  7. Takada, E., Toyota, H., Suzuki, J. and Mizuguchi, J. Prevention of anti-IgMinduced apoptosis accompanying G1 arrest in B lymphoma cells overexpressing dominant-negative mutant form of c-Jun N-terminal kinase 1. J. Immunol. 166 (2001) 1641–1649.

    PubMed  CAS  Google Scholar 

  8. DeFranco, A.L., Gold, M.R. and Jakway, J.P. B-lymphocyte signal transduction in response to anti-immunoglobulin and bacterial lipopolysaccharide. Immunol. Rev. 95 (1987) 161–176.

    Article  PubMed  CAS  Google Scholar 

  9. An, S. and Knox, K.A. Ligation of CD40 rescues Ramos-Burkitt lymphoma B cells from calcium ionophore- and antigen receptor-triggered apoptosis by inhibiting activation of the cysteine protease CPP32/Yama and cleavage of its substrate PARP. FEBS Lett. 386 (1996) 115–122.

    Article  PubMed  CAS  Google Scholar 

  10. Furuhata, M., Takada, E., Noguchi, T., Ichijo, H. and Mizuguchi, J. Apoptosis signal-rgulating kinase (ASK)-1 mediates apoptosis through activation of JNK1 following engagement of membrane immunoglobulin. Exp. Cell Res. 315 (2009) 3467–3476.

    Article  PubMed  CAS  Google Scholar 

  11. Reed, J.C. Bcl-2 family proteins. Oncogene 17 (1998) 3225–3236.

    Article  PubMed  Google Scholar 

  12. Takada, E., Hata, K. and Mizuguchi, J. Requirement for JNK-dependent upregulation of BimL in anti-IgM-induced apoptosis in murine B lymphoma cell lines WEHI-231 and CH31. Exp. Cell Res. 312 (2006) 3728–3738.

    Article  PubMed  CAS  Google Scholar 

  13. Herold, M.J., Kuss, A.W., Kraus, C. and Berberich, I. Mitochondriadependent caspase-9 activation is necessary for antigen receptor-mediated effector caspase activation and apoptosis in WEHI 231 lymphoma cells. J. Immunol. 168 (2002) 3902–3909.

    PubMed  CAS  Google Scholar 

  14. Weston, C.R. and Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19 (2007) 142–149.

    Article  PubMed  CAS  Google Scholar 

  15. Tournier, C., Hess, P., Yang, D.D., Xu, J., Turner, T.K., Nimnual, A., Bar-Sagi, D., Jones, S.N., Flavell, R.A. and Davis, R.J. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288 (2000) 870–874.

    Article  PubMed  CAS  Google Scholar 

  16. Takada, E., Hata, K. and Mizuguchi, J. c-Jun NH(2)-terminal kinase (JNK)-dependent nuclear translocation of apoptosis-inducing factor (AIF) following engagement of membrane immunoglobulin on WEHI-231 B lymphoma cells. J. Cell Biochem. 104 (2008) 1927–1936.

    Article  PubMed  CAS  Google Scholar 

  17. Saelens, X., Festjens, N., Vande Walle, L., van Gurp, M., van Loo, G. and Vandenabeele, P. Toxic proteins released from mitochondria in cell death. Oncogene 23 (2004) 2861–2874.

    Article  PubMed  CAS  Google Scholar 

  18. Susin, S.A., Zamzami, N. and Kroemer, G. Mitochondria as regulators of apoptosis: doubt no more. Biochim. Biophys. Acta 1366 (1998) 151–165.

    Article  PubMed  CAS  Google Scholar 

  19. van Eijk, M. and de Groot, C. Germinal center B cell apoptosis requires both caspase and cathepsin activity. J. Immunol. 163 (1999) 2478–2482.

    PubMed  Google Scholar 

  20. Jiang, X., Toyota, H., Yoshimoto, T., Takada, E., Asakura, H. and Mizuguchi, J. Anti-IgM-induced down-regulation of nuclear Thy28 protein expression in Ramos B cells. Apoptosis 8 (2003) 509–519.

    Article  PubMed  CAS  Google Scholar 

  21. Takeda, K., Hayakawa, Y., Smyth, M.J., Kayagaki, N., Yamaguchi, N., Kakuta, S., Iwakura, Y., Yagita, H. and Okumura, K. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med. 7 (2001) 94–100.

    Article  PubMed  CAS  Google Scholar 

  22. Toyota, H., Yanase, N., Yoshimoto, T., Moriyama, M., Sudo, T. and Mizuguchi, J. Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer Lett. 189 (2003) 221–230.

    Article  PubMed  CAS  Google Scholar 

  23. Carey, G.B. and Scott, D.W. Role of phosphatidylinositol 3-kinase in anti-IgM- and anti-IgD-induced apoptosis in B cell lymphomas. J. Immunol. 166 (2001) 1618–1626.

    PubMed  CAS  Google Scholar 

  24. Donjerkovic, D. and Scott, D.W. Activation-induced cell death in B lymphocytes. Cell Res. 10 (2000) 179–192.

    Article  PubMed  CAS  Google Scholar 

  25. Richards, J.D., Dave, S.H., Chou, C.H., Mamchak, A.A. and DeFranco, A.L. Inhibition of the MEK/ERK signaling pathway blocks a subset of B cell responses to antigen. J. Immunol. 166 (2001) 3855–3864.

    PubMed  CAS  Google Scholar 

  26. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J. and Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science k270 (1995) 1326–1331.

    Article  Google Scholar 

  27. Gross, A., McDonnell, J.M. and Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13 (1999) 1899–1911.

    Article  PubMed  CAS  Google Scholar 

  28. Winter-Vann, A.M. and Johnson, G.L. Integrated activation of MAP3Ks balances cell fate in response to stress. J. Cell Biochem. 102 (2007) 848–858.

    Article  PubMed  CAS  Google Scholar 

  29. Hildeman, D., Jorgensen, T., Kappler, J. and Marrack, P. Apoptosis and the homeostatic control of immune responses. Curr. Opin. Immunol. 19 (2007) 516–521.

    Article  PubMed  CAS  Google Scholar 

  30. Bucan, V., Reimers, K., Choi, C.Y., Eddy, M.T. and Vogt, P.M. The antiapoptotic protein lifeguard is expressed in breast cancer cells and tissues. Cell. Mol. Biol. Lett. 15 (2010) 296–310.

    Article  PubMed  CAS  Google Scholar 

  31. Sabapathy, K., Hu, Y., Kallunki, T., Schreiber, M., David, J.P., Jochum, W., Wagner, E.F. and Karin, M. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 9 (1999) 116–125.

    Article  PubMed  CAS  Google Scholar 

  32. Ruiz-Vela, A., Gonzalez de Buitrago, G. and Martinez, A.C. Implication of calpain in caspase activation during B cell clonal deletion. EMBO J. 18 (1999) 4988–4998.

    Article  PubMed  CAS  Google Scholar 

  33. Bras, A., Ruiz-Vela, A., Gonzalez de Buitrago, G. and Martinez, A.C. Caspase activation by BCR cross-linking in immature B cells: differential effects on growth arrest and apoptosis. FASEB J. 13 (1999) 931–944.

    PubMed  CAS  Google Scholar 

  34. Chang, L. and Karin, M. Mammalian MAP kinase signalling cascades. Nature 410 (2001) 37–40.

    Article  PubMed  CAS  Google Scholar 

  35. Chi, H., Barry, S.P., Roth, R.J., Wu, J.J., Jones, E.A., Bennett, A.M. and Flavell, R.A. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc. Natl. Acad. Sci. U S A 103 (2006) 2274–2279.

    Article  PubMed  CAS  Google Scholar 

  36. Hayakawa, T., Matsuzawa, A., Noguchi, T., Takeda, K. and Ichijo, H. The ASK1-MAP kinase pathways in immune and stress responses. Microbes Infect. 8 (2006) 1098–1107.

    Article  PubMed  CAS  Google Scholar 

  37. Clarke, P.R. and Allan, L.A. Cell-cycle control in the face of damage-a matter of life or death. Trends Cell Biol. 19 (2009) 89–98.

    Article  PubMed  CAS  Google Scholar 

  38. Senderowicz, A.M. Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr. Opin. Cell Biol. 16 (2004) 670–678.

    Article  PubMed  CAS  Google Scholar 

  39. Woo, M., Hakem, R., Furlonger, C., Hakem, A., Duncan, G.S., Sasaki, T., Bouchard, D., Lu, L., Wu, G.E., Paige, C.J. and Mak, T.W. Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat. Immunol. 4 (2003) 1016–1022.

    Article  PubMed  CAS  Google Scholar 

  40. Beisner, D.R., Ch’en, I.L., Kolla, R.V., Hoffmann, A. and Hedrick, S.M. Cutting edge: innate immunity conferred by B cells is regulated by caspase-8. J. Immunol. 175 (2005) 3469–3473.

    PubMed  CAS  Google Scholar 

  41. Zinkel, S., Gross, A. and Yang, E. BCL2 family in DNA damage and cell cycle control. Cell Death Differ. 13 (2006) 1351–1359.

    Article  PubMed  CAS  Google Scholar 

  42. Hublarova, P., Greplova, K., Holcakova, J., Vojtesek, B. and Hrstka, R. Switching p53-dependent growth arrest to apoptosis via the inhibition of DNA damage-activated kinases. Cell. Mol. Biol. Lett. 15 (2010) 473–484.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichiro Mizuguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyota, H., Jiang, XZ., Asakura, H. et al. Thy28 partially prevents apoptosis induction following engagement of membrane immunoglobulin in WEHI-231 B lymphoma cells. Cell Mol Biol Lett 17, 36–48 (2012). https://doi.org/10.2478/s11658-011-0034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-011-0034-8

Key words