Skip to main content

Proteomic analysis of tumor tissue in CT-26 implanted BALB/C mouse after treatment with ascorbic acid


Tumor establishment and penetration consists of a series of complex processes involving multiple changes in gene expression and protein modification. Proteome changes of tumor tissue were investigated after intraperitoneal administration of a high concentration of ascorbic acid in BALB/C mice implanted with CT-26 cancer cells using two-dimensional gel electrophoresis and mass spectrometry. Eighteen protein spots were identified whose expression was different between control and ascorbic acid treatment groups. In particular, eukaryotic translation initiation factor 3 subunit 1, nucleophosmin, latexin, actin-related protein 2/3 complex subunit 5, M2-type pyruvate kinase, vimentin, tumor protein translationally-controlled 1, RAS oncogene family Ran, plastin 3 precursor, ATPase, Rho GDT dissociation inhibitor β, and proteasome activator subunit 2 expression were quantitatively up-regulated. The increase in the level of these proteins was accompanied by an increase in mRNA level. The cytoskeleton protein actin, vimentin, and tumor protein translationally-controlled 1 showed quantitative expression profile differences. A change in actin cytoskeleton distribution, functionally relevant to the proteome result, was observed after treatment with ascorbic acid. These results suggest a previously undefined role of ascorbic acid in the regulation of cytoskeleton remodeling in tumor tissues.



adenosine triphosphate




extracellular matrix


guanosine diphosphate


log ratio


Matrix-assisted laser-desorption ionization time-of-flight tandem mass spectroscopy


matrix metalloproteinases


polyacrylamide gel electrophoresis


phosphate buffered solution


polymerase chain reaction


sodium dodecyl sulfate


trichloroacetic acid


translationally controlled tumor protein


two-dimensional gel electrophoresis


  1. 1.

    Padayatty, S.J., Sun, H., Wang, Y., Riordan, H.D., Hewitt, S.M., Katz, A., Wesley, R.A. and Levine, M. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann. Intern. Med. 140 (2004) 533–537.

    PubMed  CAS  Google Scholar 

  2. 2.

    Bram, S., Froussard, P., Guichard, M., Jasmin, C., Augery, Y., Sinoussi-Barre, F. and Wray, W. Ascorbic acid preferential toxicity for malignant melanoma cells. Nature 284 (1980) 629–631.

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Bruchelt, G., Baader, L., Reith, A.G., Holger, N.L., Gebhardt, S. and Niethammer, D. Rationale for the use of ascorbic acid in neuroblastoma therapy. Human Neuroblastoma Newark: Harwood Academic Publishers (1993) 34–40.

  4. 4.

    Fujinaga, S., Sakagami, H., Kuribayashi, N., Takayama, H., Amano, Y., Sakagami, T. and Takeda, M. Possible role of hydrogen peroxide in apoptosis induction by ascorbic acid in human myelogenous leukemic cell lines. Showa University Journal of Medical Sciences 6 (1994) 135–144.

    CAS  Google Scholar 

  5. 5.

    De Laurenzi, V., Melino, G., Savini, I., Annicchiarico-Petruzzelli, M., Finazzi-Agro, A. and Avigliano, L. Cell death by oxidative stress and ascorbic acid regeneration in human neuroectodermal cell lines. Eur. J. Cancer 31A (1995) 463–466.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Park, C.H. Biological nature of the effect of ascorbic acids on the growth of human leukemic cells. Cancer Res. 45 (1985) 3969–3973.

    PubMed  CAS  Google Scholar 

  7. 7.

    Park, C.H., Kimler, B.F., Bodensteiner, D., Lynch, S.R. and Hassanein, R.S. In vitro growth modulation by L-ascorbic acid of colony-forming cells from bone marrow of patients with myelodysplastic syndromes. Cancer Res. 52 (1992) 4458–4466.

    PubMed  CAS  Google Scholar 

  8. 8.

    Park, S., Han, S.S., Park, C.H., Hahm, E.R., Lee, S.J., Park, H.K., Lee, S.H., Kim, W.S., Jung, C.W., Park, K., Riordan, H.D., Kimler, B.F., Kim, K. and Lee, J.H. L-Ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxidemediated mechanisms. Int. J. Biochem. Cell. Biol. 36 (2004) 2180–2195.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Fidler, I.J. Critical determinants of cancer metastasis: rationale for therapy. Cancer Chemother. Pharmacol. 43 (1999) S3–S10.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Mignatti, P. and Rifkin, D.B. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73 (1993) 161–195.

    PubMed  CAS  Google Scholar 

  11. 11.

    Rath, M. and Pauling, L. Plasmin-induced proteolysis and the role of apoprotein(a), lysine and synthetic analogs. J. Orthomolecular Med. 7 (1992) 17–23.

    Google Scholar 

  12. 12.

    Roomi, M.W., Roomi, N.W., Ivanov, V., Kalinovsky, T., Niedzwiecki, A. and Rath, M. Modulation of N-methyl-N-nitrosourea induced mammary tumors in Sprague-Dawley rats by combination of lysine, proline, arginine, ascorbic acid and green tea extract. Breast Cancer Res. 7 (2005) R291–R295.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Kohn, E.C. Development and prevention of metastasis. Anticancer Res. 13 (1993) 2553–2559.

    PubMed  CAS  Google Scholar 

  14. 14.

    Wybieralska, E., Koza, M., Sroka, J., Czyz, J. and Madeja, Z. Ascorbic acid inhibits the migration of Walker 256 carcinosarcoma cells. Cell. Mol. Biol. Lett. 13 (2008) 103–111.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Meadows, G.G., Pierson, H.F. and Abdallah, R.M. Ascorbate in the treatment of experimental transplanted melanoma. Am. J. Clin. Nutrit. 54 (1991) 1284S–1291S.

    PubMed  CAS  Google Scholar 

  16. 16.

    Taper, H.S., Jamison, J.M., Gilloteaux, J., Summers, J.L. and Calderon, P.B. Inhibition of the development of metastases by dietary vitamin C:K3 combination. Life Sci. 75 (2004) 955–967.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Taper, H.S., Jamison, J.M., Gilloteaux, J., Gwin, C.A., Gordon, T., and Summers, J.L. In vivo reactivation of DNases in implanted human prostate tumors after administration of a vitamin C/K3. J. Histochem. Cytochem. 49 (2001) 109–119.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Skalli, O., Ropraz, P., Trzeciak, A., Benzonana, G., Gillessen, D. and Gabbiani, G. A monoclonal antibody against α-smooth muscle actin: A new probe for smooth muscle differentiation. J. Cell Biol. 103 (1986) 2787–2796.

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Van Muijen, G.N.P., Ruiter, D.J. and Warnaar, S.O. Coexpression of intermediate filament polypeptides in human fetal and adult tissues. Lab. Invest. 57 (1987) 359–369.

    PubMed  Google Scholar 

  20. 20.

    Goddard, M.J., Wilson, B. and Grant, J.W. Comparison of commercially available cytokeratin antibodies in normal and neoplastic adult epithelial and non-epithelial tissues. J. Clin. Pathol. 44 (1991) 660–663.

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Kobayashi, N. and Mundel, P. A role of microtubules during the formation of cell processes in neuronal and non-neuronal cells. Cell Tissue Res. 91 (1998) 163–174.

    Article  Google Scholar 

  22. 22.

    Duncan, J.E. and Warrior, R. The cytoplasmic dynein and kinesin motors have interdepedent roles in pattering the Drosophila oocyte. Curr. Biol. 12 (2002) 1982–1991.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Lechner, A., Leech, C.A., Abraham, E.J., Nolan, A.L. and Habener, J.F. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem. Biophys. Res. Commun. 293 (2002) 670–674.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Yang, S.H., Kim, J.S., Oh, T.J., Kim, M.S., Lee, S.W., Woo, S.K., Cho, H.S., Choi, Y.H., Kim, Y.H., Rha, S.Y., Chung, HC. and An, S.W. Genome-scale analysis of resveratrol-induced gene expression profile in human ovarian cancer cells using a cDNA microarray. Int. J. Oncol. 22 (2003) 741–750.

    PubMed  CAS  Google Scholar 

  25. 25.

    Gruber, H.E., Tewfik, H.H. and Tewfik, F.A. Cytoarchitecture of Ehrlich ascites carcinoma implanted in the hind limb of ascorbic acid-supplemented mice. Eur. J. Cancer. 16 (1980) 441–448.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Bommer, U.A. and Thiele, B.J. The translationally controlled tumor protein (TCTP). Int. J. Biochem. Cell. Biol. 36 (2004) 379–385.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Bommer, U.A., Borovjagin, A.V., Greagg, M.A., Jeffrey, I.W., Russell, P., Laing, K.G., Lee, M. and Clemens, M.J. The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 8 (2002) 478–496.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Nielsen, H.V., Johnsen, A.H., Sanchez, J.C., Hochstrasser, D.F. and Schiotz, P.O. Identification of a basophil leukocyte interleukin-3-regulated protein that is identical to IgE-dependent histamine-releasing factor. Allergy 53 (1998) 642–652.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Teshima, S., Rokutan, K., Nikawa, T. and Kishi, K. Macrophage colonystimulating factor stimulates synthesis and secretion of a mouse homolog of a human IgE-dependent histamine-releasing factor by macrophages in vitro and in vivo. J. Immunol. 161 (1998) 6356–6366.

    PubMed  CAS  Google Scholar 

  30. 30.

    Thiele, H., Berger, M., Skalweit, A. and Thiele, B.J. Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumor protein (TCTP). Eur. J. Biochem. 267 (2000) 5473–5481.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Gachet, Y., Tournier, S., Lee, M., Lazaris-Karatzas, A., Poulton, T. and Bommer, U.A. The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J. Cell. Sci. 112 (1999) 1257–1271.

    PubMed  CAS  Google Scholar 

  32. 32.

    Yarm, F.R. Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol. Cell. Biol. 22 (2002) 6209–6221.

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Yoon, T., Jung, J., Kim, M., Lee, K.M., Choi, E.C. and Lee, K. Identification of the self-interaction of rat TCTP/IgE-dependent histamine-releasing factor using yeast two-hybrid system. Arch. Biochem. Biophys. 384 (2000) 379–382.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Sinha, P., Kohl, S., Fischer, J., Hütter, G., Kern, M., Köttgen, E., Dietel, M., Lage, H., Schnölzer, M. and Schadendorf, D. Identification of novel proteins associated with the development of chemoresistance in malignant melanoma using two-dimensional electrophoresis. Electrophoresis 21 (2000) 3048–3057.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Walker, D.J., Pitsch, J.L., Peng, M.M., Robinson, B.L., Peters, W., Bhisutthibhan, J. and Meshnick, S.R. Mechanisms of artemisinin resistance in the rodent malaria pathogen Plasmodium yoelii. Antimicrob. Agents Chemother. 44 (2000) 344–347.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Thaw, P., Baxter, N.J., Hounslow, A.M., Price, C., Waltho, J.P. and Craven, C.J. Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat. Struct. Biol. 8 (2001) 701–704.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Li, F., Zhang, D. and Fujise, K. Characterization of fortilin, a novel antiapoptotic protein. J. Biol. Chem. 276 (2001) 47542–47549.

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Tuynder, M., Susini, L., Prieur, S., Besse, S., Fiucci, G., Amson, R. and Telerman, A. Biological models and genes of tumor reversion: Cellular reprogramming through tpt1/TCTP and SIAH-1. Proc. Natl. Acad. Sci. USA 99 (2002) 14976–14981.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Seyeon Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J., Lee, G., Park, J.H. et al. Proteomic analysis of tumor tissue in CT-26 implanted BALB/C mouse after treatment with ascorbic acid. Cell Mol Biol Lett 17, 62–76 (2012).

Download citation

Key words

  • Cytoskeleton remodelling
  • Ascorbic acid
  • Proteomics
  • Tumor tissue
  • mRNA