Skip to main content

Interaction between plant polyphenols and the erythrocyte membrane

Abstract

The purpose of these studies was to determine the effect of polyphenols contained in extracts from apple, strawberry and blackcurrant on the properties of the erythrocyte membrane, treated as a model of the biological membrane. To this end, the effect of the substances used on hemolysis, osmotic resistance and shape of erythrocytes, and on packing order in the hydrophilic region of the erythrocyte membrane was studied. The investigation was performed with spectrophotometric and fluorimetric methods, and using the optical microscope. The hemolytic studies have shown that the extracts do not induce hemolysis at the concentrations used. The results obtained from the spectrophotometric measurements of osmotic resistance of erythrocytes showed that the polyphenols contained in the extracts cause an increase in the resistance, rendering them less prone to hemolysis in hypotonic solutions of sodium chloride. The fluorimetric studies indicate that the used substances cause a decrease of packing order in the hydrophilic area of membrane lipids. The observations of erythrocyte shapes in a biological optical microscope have shown that, as a result of the substances’ action, the erythrocytes become mostly echinocytes, which means that the polyphenols of the extracts localize in the outer lipid monolayer of the erythrocyte membrane. The results obtained indicate that, in the concentration range used, the plant extracts are incorporated into the hydrophilic area of the membrane, modifying its properties.

Abbreviations

cAK:

catalytic subunit of cyclic activated protein kinase (AMP)

GP:

generalized polarization

HPLC:

high performance liquid chromatography

HPLC/DAD:

high performance liquid chromatography/diode array detector

Laurdan:

fluorescent probes 6-dodecanoyl-2-dimethylaminonaphthalene

PBS:

phosphate buffer solution

UPLC/ESI/MS:

ultra performance liquid chromatography/electrospray ionization/mass spectrometry

References

  1. 1.

    Jaganath, I.B. and Crozier, A. Dietary flavonoids and phenolic compounds, In: Plant Phenolics and Human Health: Biochemistry, Nutrition, and Pharmacology, 2010, John Wiley & Sons, Inc. DOI: 10.1002/978047053 1792.ch6.

  2. 2.

    Wichtl, M. and Anton, R. Ribis nigri folium. In: Tradition, pratique officinale, science et thérapeutique. (Wichtl, M., and Anton, R. Eds), Plantes thérapeutiques, Tec et Doc, Paris, 1999, 471–473.

    Google Scholar 

  3. 3.

    Cyboran, S., Bonarska-Kujawa, D., Kapusta, I., Oszmiański, J. and Kleszczyńska, H. Antioxidant potentials of polyphenolic extracts from leaves of trees and fruit bushes. Curr. Top. Biophys. 34 (2011) 15–21.

    Google Scholar 

  4. 4.

    Garbacki, N., Angenot, L., Bassleer, C., Damas, J. and Tins, M. Effects of prodelphinidins isolated from Ribes nigrum on chondrocyte metabolism and COX activity. Naunyn-Schemiedeberg’s Arch. Pharmacol. 365 (2002) 434–441.

    CAS  Article  Google Scholar 

  5. 5.

    Declume, C. Anti-inflammatory evaluation of a hydroalcoholic extract of black currant leaves (Ribes nigrum). J. Ethnopharmacol. 27 (1989) 91–98.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Wang, B.H., Foo, L.Y. and Polya, G.M. Differential inhibition of eukaryote protein kinases by condensed tannins. Phytochemistry 43 (1996) 359–365.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Chenah, P.H., Ifansyah, N., Chahine, R., Mounayar-Chalfoun, A., Gleye, J. and Moulis, C. Comparative effects of total flavonoids extracted from Ribes nigrum leaves, rutin and rutin and isoquercitrin on biosynthesis and release of prostaglandis in the ex vivo rabbit heart. Prostaglandins Leukot. Med. 22 (1986) 295–300.

    Article  Google Scholar 

  8. 8.

    Mechikova, G.Ya., Stepanova, T.A. and Zaguzova, E.V. Quantitative determination of total phenols in strawberry leaves. Pharm. Chem. J. 41 (2007) 97–100.

    CAS  Article  Google Scholar 

  9. 9.

    Karjalainen, R., Lehtinen, A., Hietaniemi, V., Pihlava, J.M., Jokinen, K., Keinänen, M. and Julkunen-Tiito, R. Benzothiadiazole and glycine betaine treatments enhance phenolic compound production in strawberry. In: IV International Strawberry Symposium, ISHS Acta Hortic., 2002, 567–576.

  10. 10.

    Hukkanen, A.T., Kokko, H.I., Buchala, A.J., McDougall, G.J., Stewart, D., Kärenlampi, S.O. and Karjalainen, R.O. Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J. Agric. Food Chem. 55 (2007) 1862–1870.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Simirgiotis, M.J. and Schmeda-Hirschmann, G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD-ESI-MS and free radical quenching techniques. J. Food Compos. Anal. 23 (2010) 545–553.

    CAS  Article  Google Scholar 

  12. 12.

    Wang, S.Y. and Lin, H-S. Antioxidant activity on fruits and leaves of blackbeery, raspberry and strawberry varies with cultivar and developmental stage. J. Agric. Food. Chem. 48 (2000) 140–146.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Katalinic, V., Milos, M., Kulisic, T. and Jukic, M. Screening of 70 medical plant extracts for antioxidant capacity and total phenols. Food Chem. 94 (2006) 550–557.

    CAS  Article  Google Scholar 

  14. 14.

    Mudnic, I., Modun, D., Brizac, I., Vakovic J., Generalic, I., Katalinic, V., Biluscic, T., Ljubenkov, I. and Boban, M. Cardiovascular effects in vitro of aqueous extract of wild strawberry leaves. Int. J. Phytoth. Phytopharmacol. 16 (2009) 462–469

    CAS  Article  Google Scholar 

  15. 15.

    Raudoniūtė, I., Rovira, J., Venskutonis, P.R., Damašius, J., Rivero-Pérez, M.D. and González-SanJosé, M.L. Antioxidant properties of garden strawberry leaf extract and its effect on fish oil oxidation. Food Sci. Technol. 46 (2011) 935–943.

    Google Scholar 

  16. 16.

    Raa, J. Polyphenols and natural resistance of apple leaves against Venturia inaequalis. Eur. J. Plant Pathol. 74 (1968) 37–45.

    CAS  Google Scholar 

  17. 17.

    Rice-Evans, C.A., Miller, N. and Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20 (1996) 933–956.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Robards, K., Prenzler, P., Tucke, G., Swatsitang, P. and Glover, W. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 66 (1999) 401–436.

    CAS  Article  Google Scholar 

  19. 19.

    Oszmiański, J., Wolniak, M., Wojdyło, A. and Wawer, I. Influence of apple puree preparation and storage on polyphenol contents and antioxidant activity. Food Chem. 107 (2008) 1473–1484.

    Article  Google Scholar 

  20. 20.

    Oszmiański, J., Wojdyło A. and Kolniak, J. Effect of enzymatic mash treatment and storage on phenolic composition, antioxidant activity, and turbidity of cloudy apple juice. J. Agric. Food Chem. 57 (2009) 7078–7085.

    PubMed  Article  Google Scholar 

  21. 21.

    Gąsiorowski, K., Szyba, K., Brokos, B., Kołaczyńska, B., Jankowiak-Włodarczyk, M. and Oszmiański, J. Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Lett. 119 (1997) 37–46.

    PubMed  Article  Google Scholar 

  22. 22.

    Oszmiański, J. and Wojdyło, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 221 (2005) 809–813.

    Article  Google Scholar 

  23. 23.

    Oszmiański, J. and Wojdyło, A. Effects of various clarification treatments on phenolic compounds and color of apple juice. Eur. Food Res. Technol. 224 (2007) 755–762.

    Article  Google Scholar 

  24. 24.

    Skupień, K. and Oszmiański, J. Comparison of six cultivars of strawberries (fragaria x ananasa duch.) grown in northwest Poland. Eur. Food Res. Technol. 219 (2004) 66–70.

    Article  Google Scholar 

  25. 25.

    Dodge, J.T. Mitchell, C. and Hanahan, D.J. The preparation and chemical characteristics of hemoglobin-free ghosts of erythrocytes. Arch. Biochem. 100 (1963) 119–130.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Bradford, M.M. Rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976) 248–254.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Lakowicz, J.R. Solvent and environmental effects, In: Principles of Fluorescence Spectroscopy, Plenum, London, New York, 2006, 205–235.

    Google Scholar 

  28. 28.

    Bernhardt, I., Ellory, J.C. Red cell membrane transport in health and disease. Springer-Verlag, Berlin, 2003, 1–748.

    Google Scholar 

  29. 29.

    Boris, M., Bukowska, B., Baczyńska, J., Duda, W., Pilarski, R. and Gulewicz, K. [The effect of leaf and bark extracts of Uncaria tomentosa on the human erythrocyte membrane]. Biological Membranes, Monograph, Wrocław, 2008, 143–148.

    Google Scholar 

  30. 30.

    Pawlikowska-Pawlęga, B., Gruszecki, W., Misiak, L. and Gawron, A. The study of the quercetin action on human erythrocyte membranes. Biochem. Pharm. 66 (2003) 605–612.

    PubMed  Article  Google Scholar 

  31. 31.

    Abe, H., Katada, K., Orita, M. and Nishikibe, M. Effects of calcium antagonists on the erythrocyte membrane. J. Pharm. Pharmacol. 43 (1991) 22–26.

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R.M. and Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys. J. 60 (1991) 179–189.

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Chong, P.L. and Wong, P.T. Interactions of Laurdan with phosphatidylcholine liposomes: a high pressure FTIR study. Biochim. Biophys. Acta 1149 (1993) 260–266.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Bonarska-Kujawa, D., Pruchnik, H., Oszmiański, J., Sarapuk, J. and Kleszczyńska, H. Changes caused by fruit extracts in the lipid phase of biological and model membranes. Food Biophys. 6 (2011) 58–67.

    PubMed  Article  Google Scholar 

  35. 35.

    Suwalsky, M., Orellana, P., Avello, M., Villena, F. and Sotomayor, C.P. Human erythrocytes are affected in vitro by extracts of Ungi molinae leaves. Food Chem. Toxicol. 44 (2006) 1393–1398.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Sheetz, M.P. and Singer, S.J. Proc. Natl. Acad. Sci. 71 (1974) 4457–4461.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Żyłka, R., Kleszczyńska, H., Kupiec, J., Bonarska-Kujawa, D., Hładyszowski, J. and Przestalski, S. Modifications of erythrocyte membrane hydration induced by organic tin compounds. Cell Biol. Int. 33 (2009) 801–806.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sylwia Cyboran.

Additional information

Paper authored by participants of the international conference: 18th Meeting, European Association for Red Cell Research, Wrocław — Piechowice, Poland, May 12–15th, 2011. Publication cost was covered by the organizers of this meeting.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cyboran, S., Oszmiański, J. & Kleszczyńska, H. Interaction between plant polyphenols and the erythrocyte membrane. Cell Mol Biol Lett 17, 77–88 (2012). https://doi.org/10.2478/s11658-011-0038-4

Download citation

Key words

  • Erythrocyte membrane
  • Plant polyphenols
  • Hemolysis
  • Osmotic resistance
  • Echinocytes
  • Generalized polarization
  • Lipid packing order