Skip to main content

Developmental expression of P5 ATPase mRNA in the mouse

Abstract

P5 ATPases (ATP13A1 through ATP13A5) are found in all eukaryotes. They are currently poorly characterized and have unknown substrate specificity. Recent evidence has linked two P5 ATPases to diseases of the nervous system, suggesting possible importance of these proteins within the nervous system. In this study we determined the relative expression of mouse P5 ATPases in development using quantitative real time PCR. We have shown that ATP13A1 and ATP13A2 were both expressed similarly during development, with the highest expression levels at the peak of neurogenesis. ATP13A3 was expressed highly during organogenesis with one of its isoforms playing a more predominant role during the period of neuronal development. ATP13A5 was expressed most highly in the adult mouse brain. We also assessed the expression of these genes in various regions of the adult mouse brain. ATP13A1 to ATP13A4 were expressed differentially in the cerebral cortex, hippocampus, brainstem and cerebellum while levels of ATP13A5 were fairly constant between these brain regions. Moreover, we demonstrated expression of the ATP13A4 protein in the corresponding brain regions using immunohistochemistry. In summary, this study furthers our knowledge of P5-type ATPases and their potentially important role in the nervous system.

Abbreviations

ASD:

autism spectrum disorders

B2m:

beta-2-microglobulin

DAB:

3,3′-diaminobenzidine

DTT:

dithiothreitol

Gapdh:

glyceraldehyde 3-phosphate dehydrogenase

Gusb:

beta-glucuronidase

HPRT:

hypoxanthine phosphoribosyl transferase

NGS:

normal goat serum

PBS:

phosphate buffered saline

PBS-T:

phosphate buffered saline Tween 20

PCR:

polymerase chain reaction

PD:

Parkinson’s disease

PFA:

paraformaldehyde

Pgk1:

phosphoglycerate kinase 1

qPCR:

quantitative polymerase chain reaction

Tfrc:

transferring receptor

References

  1. 1.

    Lutsenko, S. and Kaplan, J.H. Organization of P-type ATPases: significance of structural diversity. Biochemistry (N.Y.) 48 (1995) 15607–15613.

    Article  Google Scholar 

  2. 2.

    Axelsen, K.B. and Palmgren, M.G. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 1 (1998) 84–101.

    Article  Google Scholar 

  3. 3.

    Kuhlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 4 (2004) 282–295.

    Article  Google Scholar 

  4. 4.

    Paulusma, C.C. and Oude Elferink, R.P. The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease. Biochim. Biophys. Acta 1–2 (2005) 11–24.

    Google Scholar 

  5. 5.

    Folmer, D.E., Elferink, R.P. and Paulusma, C.C. P4 ATPases — lipid flippases and their role in disease. Biochim. Biophys. Acta 7 (2009) 628–635.

    Google Scholar 

  6. 6.

    Cronin, S.R., Khoury, A., Ferry, D.K. and Hampton, R.Y. Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p. J. Cell Biol. 5 (2000) 915–924.

    Article  Google Scholar 

  7. 7.

    Cronin, S.R., Rao, R. and Hampton, R.Y. Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J. Cell Biol. 6 (2002) 1017–1028.

    Article  Google Scholar 

  8. 8.

    Vallipuram, J., Grenville, J. and Crawford, D.A. The E646D-ATP13A4 mutation associated with autism reveals a defect in calcium regulation. Cell. Mol. Neurobiol. 30 (2010) 233–246.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Suzuki, C. and Shimma, Y.I. P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT. Mol. Microbiol. 4 (1999) 813–823.

    Article  Google Scholar 

  10. 10.

    Vashist, S., Frank, C.G., Jakob, C.A. and Ng, D.T. Two distinctly localized p-type ATPases collaborate to maintain organelle homeostasis required for glycoprotein processing and quality control. Mol. Biol. Cell 11 (2002) 3955–3966.

    Article  Google Scholar 

  11. 11.

    Jakobsen, M.K., Poulsen, L.R., Schulz, A., Fleurat-Lessard, P., Moller, A., Husted, S., Schiott, M., Amtmann, A. and Palmgren, M.G. Pollen development and fertilization in Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS gene encoding a type V P-type ATPase. Genes Dev. 22 (2005) 2757–2769.

    Article  Google Scholar 

  12. 12.

    Suzuki, C. Immunochemical and mutational analyses of P-type ATPase Spf1p involved in the yeast secretory pathway. Biosci. Biotechnol. Biochem. 11 (2001) 2405–2411.

    Article  Google Scholar 

  13. 13.

    Rand, J.D. and Grant, C.M. The thioredoxin system protects ribosomes against stress-induced aggregation. Mol. Biol. Cell 1 (2006) 387–401.

    Google Scholar 

  14. 14.

    Moller, A.B., Asp, T., Holm, P.B. and Palmgren, M.G. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps. Mol. Phylogenet. Evol. 2 (2008) 619–634.

    Article  Google Scholar 

  15. 15.

    Kwasnicka-Crawford, D.A., Carson, A.R., Roberts, W., Summers, A.M., Rehnstrom, K., Jarvela, I. and Scherer, S.W. Characterization of a novel cation transporter ATPase gene (ATP13A4) interrupted by 3q25-q29 inversion in an individual with language delay. Genomics 2 (2005) 182–194.

    Article  Google Scholar 

  16. 16.

    Schultheis, P.J., Hagen, T.T., O’Toole, K.K., Tachibana, A., Burke, C.R., McGill, D.L., Okunade, G.W. and Shull, G.E. Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem. Biophys. Res. Commun. 3 (2004) 731–738.

    Article  Google Scholar 

  17. 17.

    Ramirez, A., Heimbach, A., Grundemann, J., Stiller, B., Hampshire, D., Cid, L.P., Goebel, I., Mubaidin, A.F., Wriekat, A.L., Roeper, J., Al-Din, A., Hillmer, A.M., Karsak, M., Liss, B., Woods, C.G., Behrens, M.I. and Kubisch, C. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 10 (2006) 1184–1191.

    Article  Google Scholar 

  18. 18.

    Di Fonzo, A., Chien, H.F., Socal, M., Giraudo, S., Tassorelli, C., Iliceto, G., Fabbrini, G., Marconi, R., Fincati, E., Abbruzzese, G., Marini, P., Squitieri, F., Horstink, M.W., Montagna, P., Libera, A.D., Stocchi, F., Goldwurm, S., Ferreira, J.J., Meco, G., Martignoni, E., Lopiano, L., Jardim, L.B., Oostra, B.A., Barbosa, E.R. and Bonifati, V. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 19 (2007) 1557–1562.

    Article  Google Scholar 

  19. 19.

    Lin, C.H., Tan, E.K., Chen, M.L., Tan, L.C., Lim, H.Q., Chen, G.S. and Wu, R.M. Novel ATP13A2 variant associated with Parkinson disease in Taiwan and Singapore. Neurology 21 (2008) 1727–1732.

    Article  Google Scholar 

  20. 20.

    Rakovic, A., Stiller, B., Djarmati, A., Flaquer, A., Freudenberg, J., Toliat, M.R., Linnebank, M., Kostic, V., Lohmann, K., Paus, S., Nurnberg, P., Kubisch, C., Klein, C., Wullner, U. and Ramirez, A. Genetic association study of the P-type ATPase ATP13A2 in late-onset Parkinson’s disease. Mov. Disord. 3 (2009) 429–433.

    Article  Google Scholar 

  21. 21.

    Santos, A.R. and Duarte, C.B. Validation of internal control genes for expression studies: effects of the neurotrophin BDNF on hippocampal neurons. J. Neurosci. Res. 16 (2008) 3684–3692.

    Article  Google Scholar 

  22. 22.

    de Kok, J.B., Roelofs, R.W., Giesendorf, B.A., Pennings, J.L., Waas, E.T., Feuth, T., Swinkels, D.W. and Span, P.N. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab. Invest. 1 (2005) 154–159.

    Google Scholar 

  23. 23.

    Thal, S.C., Wyschkon, S., Pieter, D., Engelhard, K. and Werner, C. Selection of endogenous control genes for normalization of gene expression analysis after experimental brain trauma in mice. J. Neurotrauma 7 (2008) 785–794.

    Article  Google Scholar 

  24. 24.

    Mwacharo, J., Dunachie, S.J., Kai, O., Hill, A.V., Bejon, P. and Fletcher, H.A. Quantitative PCR evaluation of cellular immune responses in Kenyan children vaccinated with a candidate malaria vaccine. PloS One 12 (2009) e8434.

    Article  Google Scholar 

  25. 25.

    Xing, W., Deng, M., Zhang, J., Huang, H., Dirsch, O. and Dahmen, U. Quantitative evaluation and selection of reference genes in a rat model of extended liver resection. J. Biomol. Tech. 2 (2009) 109–115.

    Google Scholar 

  26. 26.

    Boda, E., Pini, A., Hoxha, E., Parolisi, R. and Tempia, F. Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. J. Mol. Neurosci. 3 (2009) 238–253.

    Article  Google Scholar 

  27. 27.

    Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3 (2002) RESEARCH0034.

    PubMed  Article  Google Scholar 

  28. 28.

    Daston, G., Faustman, E., Ginsberg, G., Fenner-Crisp, P., Olin, S., Sonawane, B., Bruckner, J., Breslin, W. and McLaughlin, T.J. A framework for assessing risks to children from exposure to environmental agents. Environ. Health Perspect. 2 (2004) 238–256.

    Google Scholar 

  29. 29.

    Rodier, P.M. Chronology of neuron development: animal studies and their clinical implications. Dev. Med. Child Neurol. 4 (1980) 525–545.

    Google Scholar 

  30. 30.

    Angevine, J.B.,Jr. Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J. Comp. Neurol. 2 (1970) 129–187.

    Article  Google Scholar 

  31. 31.

    Gerfen, C.R., Baimbridge, K.G. and Thibault, J. The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J. Neurosci. 12 (1987) 3935–3944.

    Google Scholar 

  32. 32.

    Bayer, S.A., Wills, K.V., Triarhou, L.C. and Ghetti, B. Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp. Brain Res. 2 (1995) 191–199.

    Google Scholar 

  33. 33.

    Kawano, H., Ohyama, K., Kawamura, K. and Nagatsu, I. Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res. Dev. Brain Res. 1–2 (1995) 101–113.

    Article  Google Scholar 

  34. 34.

    Carper, R.A., Moses, P., Tigue, Z.D. and Courchesne, E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 4 (2002) 1038–1051.

    Article  Google Scholar 

  35. 35.

    Carper, R.A. and Courchesne, E. Localized enlargement of the frontal cortex in early autism. Biol. Psychiatry 2 (2005) 126–133.

    Article  Google Scholar 

  36. 36.

    Courchesne, E., Saitoh, O., Yeung-Courchesne, R., Press, G.A., Lincoln, A.J., Haas, R.H. and Schreibman, L. Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR Am. J. Roentgenol. 1 (1994) 123–130.

    Google Scholar 

  37. 37.

    Hashimoto, T., Tayama, M., Murakawa, K., Yoshimoto, T., Miyazaki, M., Harada, M. and Kuroda, Y. Development of the brainstem and cerebellum in autistic patients. J. Autism Dev. Disord. 1 (1995) 1–18.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dorota A. Crawford.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weingarten, L.S., Dave, H., Li, H. et al. Developmental expression of P5 ATPase mRNA in the mouse. Cell Mol Biol Lett 17, 153–170 (2012). https://doi.org/10.2478/s11658-011-0039-3

Download citation

Key words

  • P5-type ATPases
  • mRNA expression
  • Neurogenesis
  • Parkinson’s disease
  • Autism spectrum disorders
  • Real-time PCR
  • Immunohistochemistry