Skip to main content

Inhibition of biogenic membrane flippase activity in reconstituted ER proteoliposomes in the presence of low cholesterol levels


Biogenic membranes or self-synthesizing membranes are the site of synthesis of new lipids such as the endoplasmic reticulum (ER) in eukaryotes. Newly synthesized phospholipids (PLs) at the cytosolic leaflet of ER need to be translocated to the lumen side for membrane biogenesis and this is facilitated by a special class of lipid translocators called biogenic membrane flippase. Even though ER is the major site of cholesterol synthesis, it contains very low amounts of cholesterol, since newly synthesized cholesterol in ER is rapidly transported to other organelles and is highly enriched in plasma membrane. Thus, only low levels of cholesterol are present at the biosynthetic compartment (ER), which results in loose packing of ER lipids. We hypothesize that the prevalence of cholesterol in biogenic membranes might affect the rapid flip-flop. To validate our hypothesis, detergent solubilized ER membranes from both bovine liver and spinach leaves were reconstituted into proteoliposomes with varying mol% of cholesterol. Our results show that (i) with increase in the cholesterol/PL ratio, the half-life time of PL translocation increased, suggesting that cholesterol affects the kinetics of flipping, (ii) flipping activity was completely inhibited in proteoliposomes reconstituted with 1 mol% cholesterol, and (iii) FRAP and DSC experiments revealed that 1 mol% cholesterol did not alter the bilayer properties significantly and that flippase activity inhibition is probably mediated by interaction of cholesterol with the protein.





egg phosphatidylcholine


endoplasmic reticulum


N-(2-hydroxyethyl)piperazine-N′-2-ethanesulfonic acid


first half-life time


second half-life time


3-(N-morpholino)propanesulfonic acid








plasma membrane




salt-washed endoplasmic reticulum


Triton X-100 extract


  1. 1.

    Albert, A.D. and Boesze-Battaglia, K. The role of cholesterol in rod outer segment membranes. Prog. Lipid Res. 44 (2005) 99–124.

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Yeagle, P.L. Modulation of membrane function by cholesterol. Biochemie 73 (1991) 1303–1310.

    CAS  Article  Google Scholar 

  3. 3.

    López-Revuelta, A., Sánchez-Gallego, J.I., García-Montero, C.A., Hernández-Hernández, A., Sánchez-Yagüe, J. and Llanillo, M. Membrane cholesterol in the regulation of aminophospholipid asymmetry and phagocytosis in oxidized erythrocytes. Free. Radic. Biol. Med. 42 (2007) 1106–1118.

    PubMed  Article  Google Scholar 

  4. 4.

    Lange, Y., Echevarria, F. and Steck, T.L. Movement of zymosterol, a precursor of cholesterol, among three membranes in human fibroblast. J. Biol. Chem. 266 (1991) 21439–21443.

    PubMed  CAS  Google Scholar 

  5. 5.

    Ridsdale, A., Denis, M., Gougeon, P.Y., Ngsee, J.K., Presley, J.F. and Zha, X. Cholesterol is required for efficient endoplasmic reticulum-to-Golgi transport of secretory membrane proteins. Mol. Biol. Cell. 17 (2006) 1593–1605.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    DeGrella, R.F. and Simonia, R.D. Intracellular transport of cholesterol to the plasma membrane. J. Biol. Chem. 257 (1982) 14256–14262.

    PubMed  CAS  Google Scholar 

  7. 7.

    Kornberg, R.D. and McConnell, H.M. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 10 (1971) 1111–1120.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Gummadi, S.N. and Kumar, K.S. The mystery of phospholipid flip-flop in biogenic membranes. Cell. Mol. Biol. Lett. 10 (2005) 101–121.

    PubMed  CAS  Google Scholar 

  9. 9.

    Menon, A. K. Flippases. Trends Cell. Biol. 5 (1995) 355–360.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Hrafnsdo’ttir, S. and Menon, A.K. Reconstitution and partial characterization of phospholipid flippase activity from detergent extracts of Bacillus subtilis cell membrane. J. Bacteriol. 182 (2000) 4198–4206.

    Article  Google Scholar 

  11. 11.

    Gummadi, S.N. and Menon, A.K. Transbilayer movement of dipalmitoylphosphatidylcholine in proteoliposomes reconstituted from detergent extracts of endoplasmic reticulum: kinetics of transbilayer transport mediated by a single flippase and identification of protein fractions enriched in flippase activity. J. Biol. Chem. 277 (2002) 25337–25343.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Sahu, S.K. and Gummadi, S.N. Flippase activity in proteoliposomes reconstituted with Spinacea oleracea endoplasmic reticulum membrane proteins: evidence of biogenic membrane flippase in plants. Biochemistry 47 (2008) 10481–10490.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Lord, J.M., Kiagawva, T. and Beevers, H. Intracellular distribution of enzymes of the cytidine diphosphate choline pathway in castor bean endosperm. Proc. Nat. Acad. Sci. U.S.A. 69 (1972) 2429–2432.

    CAS  Article  Google Scholar 

  14. 14.

    Backer, J.M. and Dawidowicz, E.A. Reconstitution of a phospholipid flippase from rat liver microsomes. Nature 327 (1987) 341–343.

    PubMed  Article  Google Scholar 

  15. 15.

    Menon, A.K., Watkins, W.E. and Hrafnsdo’ttir, S. Specific proteins are required to translocate phosphatidylcholine bidirectionally across the endoplasmic reticulum. Curr Biol. 10 (2000) 241–252.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Lèvy, D., Bluzat, A., Seigneuret, M. and Rigaud, J.L. A systematic study of liposome and proteoliposomes reconstitution involving Bio-Bead mediated Triton X-100 removal. Biochim. Biophys. Acta 1025 (1990) 179–190.

    PubMed  Article  Google Scholar 

  17. 17.

    Bligh, E.G. and Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Med. Sci. 37 (1959) 911–917.

    CAS  Google Scholar 

  18. 18.

    Kaplan, R.S. and Pedersen, P.L. Sensitive protein assay in the presence of high levels of lipid. Methods Enzymol. 172 (1989) 393–399.

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Akashi, K., Miyata, H., Itoh, H. and Kinosita, K. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 71 (1996) 3242–3250.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Dimova, R., Aranda, S., Bezlyepkina, N., Nikolov, V., Riske, K.A. and Lipowsky, R. A practical guide to giant vesicles — Probing the membrane nanoregime via optical microscopy. J. Phys. Condens. Matter. 18 (2006) S1151–S1176.

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Taylor, K.M.G. and Morris, R.M. Thermal analysis of phase transition behaviour in liposomes. Thermochim. Acta 248 (1994) 289–301.

    Article  Google Scholar 

  22. 22.

    Yancey, P.G., Rodrigueza, W.V., Kilsdonk, E.P.C., Stoudt, G.W., Johnson, W.J., Phillips, M.C. and Rothblat, G.H. Ctellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 271 (1996) 16026–16034.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Eckford, P.D.W. and Sharom, F.J. Interaction of the P-glycoprotein multidrug efflux pump with cholesterol: effects on ATPase activity, drug binding and transport. Biochemistry 47 (2008) 13686–13698.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Chang, Q., Gummadi, S.N. and Menon, A.K. Chemical modification identifies two population of glycerophospholipid flippase in rat liver ER. Biochemistry 43 (2004) 10710–10718.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Bishop, R.W. and Bell, R.M. Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholine transporter. Cell 42 (1985) 51–60.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Vigh, L., Escriba, P.V., Sonnleitner, A., Sonnleitner, M., Piotto, S., Marseca, M., Horvath, I. and Harwood J.L. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog. Lipid Res. 44 (2005) 303–344.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Betts, H. and Moore, I. Plant cell polarity: The Ins-and-outs of sterol transport. Curr. Biol. 13 (2003) 781–783.

    Article  Google Scholar 

  28. 28.

    Moreau, P., Hartmann, M.A., Perret, A.M., Sturbois-Balcerzak, B. and Cassagne C. Transport of sterols to the plasma membrane of leek seedlings. Plant. Physiol. 117 (1998) 931–937.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Grebe, M., Xu, J., Möbius, W., Ueda, T., Nakano, A., Geuze, H.J., Rook, M.B. and Scheres, B. Arabidopsis sterol endocytosis involves actin mediated trafficking via ARA6-positive early endosomes. Curr. Biol. 13 (2003) 1378–1387.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Boutte, Y. And Grebe, M. Cellular processes relying on sterol function in plants. Curr. Opin. Plant Biol. 12 (2009) 705–713.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Meer, G.V., Voelker, D.R. and Feigenson, G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 9 (2008) 112–124.

    PubMed  Article  Google Scholar 

  32. 32.

    Smith, M.L. and McConnell, H.M. Pattern photobleaching of fluorescent lipid vesicles using polarized laser light. Biophys. J. 3 (1981) 139–146.

    Article  Google Scholar 

  33. 33.

    McMullen, T.P.W., Vilcheze, C., McElhaney, R.N. and Bittman, R. Differential scanning calorimetric study of the effect of sterol side chain length and structure on dipalmitoylphosphatidylcholine thermotropic phase behaviour. Biophys. J. 69 (1995) 169–176.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Zidovetzki, R. and Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim. Biophys. Acta 1768 (2007) 1311–1324.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Tieleman, D.P. and Marrink, S.J. Lipids out of equilibrium: energetics of desorption and pore mediated flip-flop. J. Am. Chem. Soc. 128 (2006) 12462–12467.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Gurtovenko, A.A. and Vattulainen, I. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J. Phys. Chem. B. 111 (2007) 13554–13559.

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Schroeder, F., Frolov, A., Schoer, J., Gallegos, A., Atshaves, B.P., Stolowich, N.J., Scott, A.I. and Kier, A.B. Intracellular sterol binding proteins, cholesterol transport and membrane domains, in intracellular cholesterol trafficking (Chang, T.Y. and Freeman, D.A., Eds), 1998, Kluwer Academic Publishers, Boston.

    Google Scholar 

  38. 38.

    Stolowich, N., Frolov, A., Petrescu, A.D., Scott, A.I., Billheimeri, J.T. and Schroeder, F. Holo-sterol carrier protein-2. J. Biol. Chem. 274 (1999) 35425–35433.

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Schroeder, F., Frolov, A., Starodub, O., Atshaves, B.B., Russelli, W., Petrescu, A., Huang, H., Gallegos, A.M., McIntosh, A., Tahotna, D., Russelli, D.H., Billheimer, J.T., Baum, C.L. and Kier, A.B. Pro-sterol carrier protein-2. J. Biol. Chem. 275 (2000) 25547–25555.

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Avdulov, N.A., Chochina, S.V., Igbavboa, U., Warden, C.S., Schroeder, F. and Wood, W.G. Lipid binding to sterol carrier protein-2 is inhibited by ethanol. Biochim. Biophys. Acta. 1437 (1999) 37–45.

    PubMed  CAS  Google Scholar 

  41. 41.

    Serrero, G., Frolov, A., Schroeder, F., Tanaka, K. and Gelhaar, L. Adipose differentiation related protein: expression, purification of recombinant protein in Escherichia coli and characterization of its fatty acid binding properties. Biochim. Biophys. Acta. 1488 (2000) 245–254.

    PubMed  CAS  Google Scholar 

  42. 42.

    Atshaves, B.P., Starodub, O., McIntosh, A., Petrescu, A., Roths, J.B., Kier, A.B. and Schroeder, F. Sterol carrier protein-2 alters high density lipoprotein-mediated cholesterol efflux. J. Biol. Chem. 275 (2000) 36852–36861.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sathyanarayana N. Gummadi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rajasekharan, A., Gummadi, S.N. Inhibition of biogenic membrane flippase activity in reconstituted ER proteoliposomes in the presence of low cholesterol levels. Cell Mol Biol Lett 17, 136–152 (2012).

Download citation

Key words

  • Biogenic membrane flippase
  • Cholesterol
  • Endoplasmic reticulum
  • Flip flop