Skip to main content
  • Research Article
  • Published:

Stress-free state of the red blood cell membrane and the deformation of its skeleton

Abstract

The response of a red blood cell (RBC) to deformation depends on its membrane, a composite of a lipid bilayer and a skeleton, which is a closed, twodimensional network of spectrin tetramers as its bonds. The deformation of the skeleton and its lateral redistribution are studied in terms of the RBC resting state for a fixed geometry of the RBC, partially aspirated into a micropipette. The geometry of the RBC skeleton in its initial state is taken to be either two concentric circles, a references biconcave shape or a sphere. It is assumed that in its initial state the skeleton is distributed laterally in a homogeneous manner with its bonds either unstressed, presenting its stress-free state, or prestressed. The lateral distribution was calculated using a variational calculation. It was assumed that the spectrin tetramer bonds exhibit a linear elasticity. The results showed a significant effect of the initial skeleton geometry on its lateral distribution in the deformed state. The proposed model is used to analyze the measurements of skeleton extension ratios by the method of applying two modes of RBC micropipette aspiration.

Abbreviations

RBC:

red blood cell

References

  1. Waugh, R.E. and Hochmuth, R.M. Mechanics and deformability of hematocytes. in: The Biomedical Engineering Handbook (Bronzino, J.D. Ed.), 2nd edition, CRC, Boca Raton, 1995, 474–486.

    Google Scholar 

  2. Discher, D.E. and Mohandas, N. Kinematics of red cell aspiration by fluorescence-imaged microdeformation. Biophys. J. 71 (1996) 1680–1694.

    Article  PubMed  CAS  Google Scholar 

  3. Discher, D.E., Boal, D.H. and Boey, S.K. Simulations of the erythrocyte cytoskeleton at large deformation. II. micropipette aspiration, Biophys. J. 75 (1998) 1584–1597.

    Article  PubMed  CAS  Google Scholar 

  4. Skalak, R., Tozeren, A., Zarda, R.P. and Chien, S. Strain energy function of red blood-cell membranes. Biophys. J. 13 (1973) 245–264.

    Article  PubMed  CAS  Google Scholar 

  5. Evans, E.A. New material concept for red-cell membrane. Biophys. J. 13 (1973a) 926–940.

    Article  PubMed  CAS  Google Scholar 

  6. Evans, E.A. New membrane concept applied to analysis of fluid sheardeformed and micropipet-deformed red blood-cells. Biophys. J. 13 (1973b) 941–954.

    Article  PubMed  CAS  Google Scholar 

  7. Brailsford, J.D., Korpman, R.A. and Bull, B.S. Red-cell shape from discocyte to hypotonic spherocyte — mathematical delineation based on a uniform shell hypothesis. J. Theor. Biol. 60 (1976) 131–145.

    Article  PubMed  CAS  Google Scholar 

  8. Fischer, T.M., Haest, C.W.M., Stohrliesen, M., Schmidschonbein, H. and Skalak, R. The stress-free shape of the red-blood-cell membrane. Biophys. J. 34 (1981) 409–422.

    Article  PubMed  CAS  Google Scholar 

  9. Peng, Z., Asaro, R.J. and Zhu, Q. Multiscale simulation of erythrocyte membrane. Phys. Rev. E. 81 (2010) 031904.

    Article  Google Scholar 

  10. Lee, J.C., Wong, D.T. and Discher, D.E. Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton. Biophys. J. 77 (1999) 853–864.

    Article  PubMed  CAS  Google Scholar 

  11. Evans, E.A. and Fung, Y.C. Improved measurements of the erythrocyte geometry. Microvasc. Res. 4 (1972) 335–347.

    Article  PubMed  CAS  Google Scholar 

  12. Byers, T.J. and Branton, D. Visualization of the protein associations in the erythrocyte-membrane skeleton. Proc. Natl. Acad. Sci. USA 82 (1985) 6153–6157.

    Article  PubMed  CAS  Google Scholar 

  13. Mukhopadhyay, R., Lim, G. and Wortis, M. Echinocyte shapes: bending, stretching, and shear determine bump shape and spacing. Biophys. J. 82 (2002) 1756–1772.

    Article  PubMed  CAS  Google Scholar 

  14. Kuzman, D., Svetina, S., Waugh, R.E. and Žekš, B. Elastic properties of the red blood cell membrane that determine echinocyte deformability. Eur. Biophys J. 33 (2004) 1–15.

    Article  PubMed  CAS  Google Scholar 

  15. Fischer, T.M. Shape memory of human red blood cells. Biophys. J. 86 (2004) 3304–3313.

    Article  PubMed  CAS  Google Scholar 

  16. Henon, S., Guillaume, L., Richert, A. and Gallet, F. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 86 (1999) 1145–1154.

    Article  Google Scholar 

  17. Li, J., Dao, M., Lim, C.T. and Suresh, S. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88 (2005) 3707–3719.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjaša Švelc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Švelc, T., Svetina, S. Stress-free state of the red blood cell membrane and the deformation of its skeleton. Cell Mol Biol Lett 17, 217–227 (2012). https://doi.org/10.2478/s11658-012-0005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0005-8

Key words