Skip to main content
  • Research Article
  • Published:

Rab3D regulates amylase levels, not agonist-induced amylase release, in AR42J cells

Abstract

Rab3D is a low molecular weight GTP-binding protein that associates with secretory granules in exocrine cells. AR42J cells are derived from rat pancreatic exocrine tumor cells and develop an acinar cell-like phenotype when treated with dexamethasone (Dex). In the present study, we examined the role of Rab3D in Dex-treated AR42J cells. Rab3D expression and localization were analyzed by subcellular fractionation and immunoblotting. The role of Rab3D was examined by overexpressing myc-labeled wild-type-Rab3D and a constitutively active form of Rab3D (Rab3D-Q81L) in AR42J cells. We found that Rab3D is predominantly membrane-associated in AR42J cells and co-localizes with zymogen granules (ZG). Following CCK-8-induced exocytosis, amylase-positive ZGs appeared to move towards the periphery of the cell and co-localization between Rab3D and amylase was less complete when compared to basal conditions. Overexpression of WT, but not mutant Rab3D, resulted in an increase in cellular amylase levels. Overexpression of mutant and WT Rab3D did not affect granule morphology, CCK-8-induced secretion, long-term (48 hr) basal amylase release or granule density. We conclude that Rab3D is not involved in agonist-induced exocytosis in AR42J cells. Instead, Rab3D may regulate amylase content in these cells.

Abbreviations

Dex:

dexamethasone

CCK-8:

cholecystokinin octapeptide

TGN:

Trans Golgi network

ZG:

zymogen granules

References

  1. Jordens, I., Marsman, M., Kuijl, C. and Neefjes, J. Rab proteins, connecting transport and vesicle fusion. Traffic 6 (2005) 1070–1077.

    Article  PubMed  CAS  Google Scholar 

  2. Grosshans, B.L., Ortiz, D. and Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl. Acad. Sci. USA. 103 (2006) 11821–11827.

    Article  PubMed  CAS  Google Scholar 

  3. Burton, J. and De Camilli, P. A novel mammalian guanine nucleotide exchange factor (GEF) specific for rab proteins. Adv. Second Messenger Phosphoprotein Res. 29 (1994) 109–119.

    Article  PubMed  CAS  Google Scholar 

  4. Takai, Y., Sasaki, T. and Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81 (2001) 153–208.

    PubMed  CAS  Google Scholar 

  5. Collins, R.N. “Getting it on”-GDI displacement and small GTPase membrane recruitment. Mol. Cell 12 (2003) 1064–1066.

    Article  PubMed  CAS  Google Scholar 

  6. Wu, S.K., Zeng, K., Wilson, I.A. and Balch, W.E. Structural insights into the function of the rab-GDI superfamily. TIBS 21 (1996) 472–476.

    PubMed  CAS  Google Scholar 

  7. Alory, C. and Balch, W.E. Molecular evolution of the Rab-escortprotein/guanine-nucleotide-dissociation-inhibitor superfamily. Mol. Biol. Cell 14 (2003) 3857–3867.

    Article  PubMed  CAS  Google Scholar 

  8. Pfeffer, S.R. Rab GDP dissociation inhibitor: Putting rab GTPases in the right place. J. Biol. Chem. 270 (1995) 17057–17059.

    Article  PubMed  CAS  Google Scholar 

  9. Wu, Y.W., Tan, K.T., Waldmann, H., Goody, R.S. and Alexandrov, K. Interaction analysis of prenylated Rab GTPase with Rab escort protein and GDP dissociation inhibitor explains the need for both regulators. Proc. Natl. Acad. Sci. USA 104 (2007) 12294–12299.

    Article  PubMed  CAS  Google Scholar 

  10. Ohnishi, H., Ernst, S.A., Wys, N., McNiven, M. and Williams, J.A. Rab3D localizes to zymogen granules in rat pancreatic acini and other exocrine glands. Am. J. Physiol. 271 (1996) G531–G538.

    PubMed  CAS  Google Scholar 

  11. Chen, X., Walker, A.K., Strahler, J.R., Simon, E.S., Tomanicek-Volk, S.L., Nelson, B.B., Hurley, M.C., Ernst, S.A., Williams, J.A. and Andrews P.C. Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol. Cell Proteomics 5 (2006) 306–312.

    PubMed  CAS  Google Scholar 

  12. Chen, X., Li, C., Izumi, T., Andrews, P.C. and Williams, J.A. Rab27b localizes to zymogen granules and regulates pancreatic acinar exocytosis. Biochem. Biophys. Res. Commun. 323 (2004) 1157–1162.

    Article  PubMed  CAS  Google Scholar 

  13. Valentijn, J.A., Gumkowski, M.D. and Jamieson, J.D. The expression pattern of rab3D in the developing rat exocrine pancreas coincides with the acquisition of regulated exocytosis. Eur. J. Cell Biol. 71 (1996) 129–136.

    PubMed  CAS  Google Scholar 

  14. Raffaniello, R.D., Lin, J., Wang, F. and Raufman, J-P. Expression of rab3D in dispersed chief cells from guinea pig stomach. Biochem. Biophys. Acta 1311 (1996) 111–116.

    Article  PubMed  Google Scholar 

  15. Tang, L.H., Gumkowski, F.D., Sengupta, D., Modlin, I.M. and Jamieson, J.D. Rab3D protein is a specific marker for zymogen granules in gastric chief cells of rats and rabbits. Gastroenterology 110 (1996) 809–820.

    Article  PubMed  CAS  Google Scholar 

  16. Raffaniello, R.D., Lin, J., Schwimmer, R. and Ojakian, G.K. Expression and localization of Rab3D in rat parotid gland. Biochem. Biophys. Acta 1450 (1999) 352–363.

    Article  PubMed  CAS  Google Scholar 

  17. Pavlos, N.J., Xu, J., Riedel, D., Yeoh, J.S., Teitelbaum, S.L., Papadimitriou, J.M., Jahn, R., Ross, F.P. and Zheng, M.H. Rab3D regulates a novel vesicular trafficking pathway that is required for osteoclastic bone resorption. Mol. Cell Biol. 25 (2005) 5253–5269.

    Article  PubMed  CAS  Google Scholar 

  18. Valentijn, J.A., van Weeren, L., Ultee, A. and Koster, A.J. Novel localization of Rab3D in rat intestinal goblet cells and Brunner’s gland acinar cells suggests a role in early Golgi trafficking. Am. J. Physiol. Gastrointest. Liver Physiol. 293 (2007) G165–177.

    Article  PubMed  CAS  Google Scholar 

  19. Valentijn, J.A., Valentijn, K., Pastore, L.M. and Jamieson, J.D. Actin coating of secretory granules during regulated exocytosis correlates with the release of Rab3D. Proc. Natl. Acad. Sci. USA 97 (2000) 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  20. Chan, D., Lin, J. and Raffaniello, R.D. Expression and localization of rab escort protein isoforms in parotid acinar cells from rat. J. Cell Physiol. 185 (2000) 339–347.

    Article  PubMed  CAS  Google Scholar 

  21. Williams, J.A., Chen, X. and Sabbatini, M.E. Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am. J. Physiol. Endocrinol. Metab. 296 (2009) E405–414.

    Article  PubMed  CAS  Google Scholar 

  22. Gevrey, J.C., Laurent, S., Saurin, J.C., Némoz-Gaillard, E., Regazzi, R., Chevrier, A.M., Chayvialle, J.A. and Abello, J. Rab3a controls exocytosis in cholecystokinin-secreting cells. Febs. Lett. 503 (2001) 19–24.

    Article  PubMed  CAS  Google Scholar 

  23. Piiper, A., Leser, J., Lutz, M.P., Beil, M. and Zeuzem, S. Subcellular distribution and function of Rab3A-D in pancreatic acinar AR42J cells. Biochem. Biophys. Res. Commun. 287 (2001) 746–751.

    Article  PubMed  CAS  Google Scholar 

  24. Nguyen, D., Jones, A., Ojakian, G.K. and Raffaniello, R.D. Rab3D redistribution and function in rat parotid acini. J. Cell Physiol. 197 (2003) 400–408.

    Article  PubMed  Google Scholar 

  25. Riedel, D., Antonin, W., Fernandez-Chacon, R., Alvarez de Toledo, G., Jo, T., Geppert, M., Valentijn, J.A., Valentijn, K., Jamieson, J.D., Südhof, T.C. and Jahn, R. Rab3D is not required for exocrine exocytosis but for the maintenance of normally sized secretory granules. Mol. Cell Biol. 22 (2002) 6487–6497.

    Article  PubMed  CAS  Google Scholar 

  26. Logsdon, C.D., Moessner, J., Williams, J.A. and Goldfine, I.D. Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells. J. Cell Biol. 100 (1985) 1200–1208.

    Article  PubMed  CAS  Google Scholar 

  27. Logsdon, C.D. Glucocorticoids increase cholecystokinin receptors and amylase secretion in pancreatic acinar AR42J cells. J. Biol. Chem. 261 (1986) 2096–2101.

    PubMed  CAS  Google Scholar 

  28. Klengel, R., Piiper, A., Pittelkow, S. and Zeuzem, S. Differential expression of Rab3 isoforms during differentiation of pancreatic acinar cell line AR42J. Biochem. Biophys. Res. Commun. 236 (1997) 719–722.

    Article  PubMed  CAS  Google Scholar 

  29. Qiu, X., Valentijn, J.A. and Jamieson, J.D. Carboxyl-methylation of Rab3D in the rat pancreatic acinar tumor cell line AR42J. Biochem. Biophys. Res. Commun. 285 (2001) 708–714.

    Article  PubMed  CAS  Google Scholar 

  30. Raffaniello, R.D., Fedorova, D., Ip, D. and Rafiq, S. Hsp90 co-localizes with rab-GDI-1 and regulates agonist-induced amylase release in AR42J cells. Cell. Physiol. Biochem. 24 (2009) 369–378.

    Article  PubMed  CAS  Google Scholar 

  31. Raffaniello, R.D. and Raufman, J-P. Cytosolic RAB3D is associated with RAB escort protein (REP), not RAB-GDP dissociation inhibitor (GDI), in dispersed chief cells from guinea pig stomach. J. Cell. Biochem. 72 (1999) 540–548.

    Article  PubMed  CAS  Google Scholar 

  32. Jena, B.P., Gumlowski, F.D., Konieczko, E.M., VonMollard, G.F., Jahn, R. and Jamieson, J.D. Redistribution of a rab3-like GTP-binding protein from secretory granules to the golgi complex in pancreatic acinar cells during regulated exocytosis. J. Cell Biol. 124 (1994) 43–53.

    Article  PubMed  CAS  Google Scholar 

  33. Ohnishi, H., Samuelson, L.C., Yule, D.I., Ernst, S.A. and Williams, J.A. Overexpression of Rab3D enhances regulated amylase secretion from pancreatic acini of transgenic mice. J. Clin. Invest. 100 (1997) 3044–3052.

    Article  PubMed  CAS  Google Scholar 

  34. Chen, X., Edwards, J.A.S., Logsdon, D., Ernst, S.A. and Williams, J.A. Dominant-negative Rab3D inhibits amylase release from mouse pancreatic acini. J. Biol. Chem. 277 (2002) 18002–18009.

    Article  PubMed  CAS  Google Scholar 

  35. Tian, X., Jin, R.U., Bredemeyer, A.J., Oates, E.J., Błazewska, K.M., McKenna, C.E. and Mills, J.C. RAB26 and RAB3D are direct transcriptional targets of MIST1 that regulate exocrine granule maturation. Mol. Cell Biol. 30 (2010) 1269–1284.

    Article  PubMed  CAS  Google Scholar 

  36. Knop, M., Aareskjold, E., Bode, G. and Gerke, V. Rab3D and annexin A2 play a role in regulated secretion of vWF, but not tPA, from endothelial cells. EMBO J. 23 (2004) 2982–2992.

    Article  PubMed  CAS  Google Scholar 

  37. van Weeren, L., de Graaff, A.M., Jamieson, J.D., Battenburg, J.J. and Valentijn, J.A. Rab3D and actin reveal distinct lamellar body subpopulations in alveolar epithelial type II cells. Am. J. Respir. Cell Mol. Biol. 30 (2004) 288–295.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Raffaniello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limi, S., Ojakian, G. & Raffaniello, R. Rab3D regulates amylase levels, not agonist-induced amylase release, in AR42J cells. Cell Mol Biol Lett 17, 258–273 (2012). https://doi.org/10.2478/s11658-012-0008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0008-5

Key words