Skip to main content
  • Research Article
  • Published:

Deficiency in TR4 nuclear receptor abrogates Gadd45a expression and increases cytotoxicity induced by ionizing radiation

Abstract

The testicular receptor 4 (TR4) is a member of the nuclear receptor superfamily that controls various biological activities. A protective role of TR4 against oxidative stress has recently been discovered. We here examined the protective role of TR4 against ionizing radiation (IR) and found that small hairpin RNA mediated TR4 knockdown cells were highly sensitive to IR-induced cell death. IR exposure increased the expression of TR4 in scramble control small hairpin RNA expressing cells but not in TR4 knockdown cells. Examination of IR-responsive molecules found that the expression of Gadd45a, the growth arrest and DNA damage response gene, was dramatically decreased in Tr4 deficient (TR4KO) mice tissues and could not respond to IR stimulation in TR4KO mouse embryonic fibroblast cells. This TR4 regulation of GADD45A was at the transcriptional level. Promoter analysis identified four potential TR4 response elements located in intron 3 and exon 4 of the GADD45A gene. Reporter and chromatin immunoprecipitation (ChIP) assays provided evidence indicating that TR4 regulated the GADD45A expression through TR4 response elements located in intron 3 of the GADD45A gene. Together, we find that TR4 is essential in protecting cells from IR stress. Upon IR challenges, TR4 expression is increased, thereafter inducing GADD45A through transcriptional regulation. As GADD45A is directly involved in the DNA repair pathway, this suggests that TR4 senses genotoxic stress and up-regulates GADD45A expression to protect cells from IR-induced genotoxicity.

Abbreviations

ChIP:

chromatin immunoprecipitation

DR:

direct repeat

GADD45A:

growth arrest and DNA-damage-inducible, alpha

GADDLuc:

GADD45A gene controlled luciferase reporter

IgG:

immunoglobulin G

IR:

ionizing radiation

MEF:

mouse embryonic fibroblast

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide

SC:

cells expressing scramble control shRNA

shRNA:

small hairpin RNA

shTR4:

cell expressing shRNA targeting TR4

TR4:

testicular nuclear receptor 4

TR4KO:

TR4 knockout

TR4RE:

TR4 response element

UV:

ultraviolet light irradiation

WT:

wild type

References

  1. Chang, C., Da Silva, S.L., Ideta, R., Lee, Y., Yeh, S. and Burbach, J.P. Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily. Proc. Natl. Acad. Sci. USA 91 (1994) 6040–6044.

    Article  PubMed  CAS  Google Scholar 

  2. Xie, S., Lee, Y.F., Kim, E., Chen, L.M., Ni, J., Fang, L.Y., Liu, S., Lin, S.J., Abe, J., Berk, B., Ho, F.M. and Chang, C. TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proc. Natl. Acad. Sci. USA 106 (2009) 13353–13358.

    Article  PubMed  CAS  Google Scholar 

  3. Tsai, N.P., Huq, M., Gupta, P., Yamamoto, K., Kagechika, H. and Wei, L.N. Activation of testicular orphan receptor 4 by fatty acids. Biochim. Biophys. Acta 1789 (2009) 734–740.

    PubMed  CAS  Google Scholar 

  4. Lee, Y.F., Lee, H.J. and Chang, C. Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. J. Steroid Biochem. Mol. Biol. 81 (2002) 291–308.

    Article  PubMed  CAS  Google Scholar 

  5. Young, W.J., Lee, Y.F., Smith, S.M. and Chang, C. A bidirectional regulation between the TR2/TR4 orphan receptors (TR2/TR4) and the ciliary neurotrophic factor (CNTF) signaling pathway. J. Biol. Chem. 273 (1998) 20877–20885.

    Article  PubMed  CAS  Google Scholar 

  6. Young, W.J., Smith, S.M. and Chang, C. Induction of the intronic enhancer of the human ciliary neurotrophic factor receptor (CNTFRalpha) gene by the TR4 orphan receptor. A member of steroid receptor superfamily. J. Biol. Chem. 272 (1997) 3109–3116.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, Y.F., Young, W.J., Burbach, J.P. and Chang, C. Negative feedback control of the retinoid-retinoic acid/retinoid X receptor pathway by the human TR4 orphan receptor, a member of the steroid receptor superfamily. J. Biol. Chem. 273 (1998) 13437–13443.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, Y.F., Young, W.J., Lin, W.J., Shyr, C.R. and Chang, C. Differential regulation of direct repeat 3 vitamin D3 and direct repeat 4 thyroid hormone signaling pathways by the human TR4 orphan receptor. J. Biol. Chem. 274 (1999) 16198–16205.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, Y.F., Shyr, C.R., Thin, T.H., Lin, W.J. and Chang, C. Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: a unique signaling pathway in the steroid receptor superfamily. Proc. Natl. Acad. Sci. USA 96 (1999) 14724–14729.

    Article  PubMed  CAS  Google Scholar 

  10. Shyr, C.R., Hu, Y.C., Kim, E. and Chang, C. Modulation of estrogen receptor-mediated transactivation by orphan receptor TR4 in MCF-7 cells. J. Biol. Chem. 277 (2002) 14622–14628.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, H.J., Lee, Y., Burbach, J.P. and Chang, C. Suppression of gene expression on the simian virus 40 major late promoter by human TR4 orphan receptor. A member of the steroid receptor superfamily. J. Biol. Chem. 270 (1995) 30129–30133.

    Article  PubMed  CAS  Google Scholar 

  12. Collins, L.L., Lee, Y.F., Heinlein, C.A., Liu, N.C., Chen, Y.T., Shyr, C.R., Meshul, C.K., Uno, H., Platt, K.A. and Chang, C. Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proc. Natl. Acad. Sci. USA 101 (2004) 15058–15063.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, L.M., Wang, R.S., Lee, Y.F., Liu, N.C., Chang, Y.J., Wu, C.C., Xie, S., Hung, Y.C. and Chang, C. Subfertility with defective folliculogenesis in female mice lacking testicular orphan nuclear receptor 4. Mol. Endocrinol. 22 (2008) 858–867.

    Article  PubMed  CAS  Google Scholar 

  14. Mu, X., Lee, Y.F., Liu, N.C., Chen, Y.T., Kim, E., Shyr, C.R. and Chang, C. Targeted inactivation of testicular nuclear orphan receptor 4 delays and disrupts late meiotic prophase and subsequent meiotic divisions of spermatogenesis. Mol. Cell Biol. 24 (2004) 5887–5899.

    Article  PubMed  CAS  Google Scholar 

  15. Kim, E., Xie, S., Yeh, S.D., Lee, Y.F., Collins, L.L., Hu, Y.C., Shyr, C.R., Mu, X.M., Liu, N.C., Chen, Y.T., Wang, P.H. and Chang, C. Disruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/C-I/C-II gene cluster. J. Biol. Chem. 278 (2003) 46919–46926.

    Article  PubMed  CAS  Google Scholar 

  16. Kim, E., Yang, Z., Liu, N.C. and Chang, C. Induction of apolipoprotein E expression by TR4 orphan nuclear receptor via 5′ proximal promoter region. Biochem. Biophys. Res. Commun. 328 (2005) 85–90.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, N.C., Lin, W.J., Kim, E., Collins, L.L., Lin, H.Y., Yu, I.C., Sparks, J.D., Chen, L.M., Lee, Y.F. and Chang, C. Loss of TR4 orphan nuclear receptor reduces phosphoenolpyruvate carboxykinase-mediated gluconeogenesis. Diabetes 56 (2007) 2901–2909.

    Article  PubMed  CAS  Google Scholar 

  18. Chen, Y.T., Collins, L.L., Uno, H. and Chang, C. Deficits in motor coordination with aberrant cerebellar development in mice lacking testicular orphan nuclear receptor 4. Mol. Cell Biol. 25 (2005) 2722–2732.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, Y.F., Liu, S., Liu, N.C., Wang, R.S., Chen, L.M., Lin, W.J., Ting, H.J., Ho, H.C., Li, G., Puzas, E.J., Wu, Q. and Chang, C. Premature aging with impaired oxidative stress defense in mice lacking TR4. Am. J. Physiol. Endocrinol. Metab. 301 (2011) E91–98.

    Article  PubMed  CAS  Google Scholar 

  20. Li, G., Lee, Y.F., Liu, S., Cai, Y., Xie, S., Liu, N.C., Bao, B.Y., Chen, Z. and Chang, C. Oxidative stress stimulates testicular orphan receptor 4 through forkhead transcription factor forkhead box O3a. Endocrinology 149 (2008) 3490–3499.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, S., Yan, S.J., Lee, Y.F., Liu, N.C., Ting, H.J., Li, G., Wu, Q., Chen, L.M. and Chang, C. Testicular nuclear receptor 4 (TR4) regulates UV light-induced responses via Cockayne syndrome B protein-mediated transcription-coupled DNA repair. J. Biol. Chem. 286 (2011) 38103–38108.

    Article  PubMed  CAS  Google Scholar 

  22. Fornace, A.J., Jr., Jackman, J., Hollander, M.C., Hoffman-Liebermann, B. and Liebermann, D.A. Genotoxic-stress-response genes and growth-arrest genes. gadd, MyD, and other genes induced by treatments eliciting growth arrest. Ann. N. Y. Acad. Sci. 663 (1992) 139–153.

    Article  PubMed  CAS  Google Scholar 

  23. Papathanasiou, M.A., Kerr, N.C., Robbins, J.H., McBride, O.W., Alamo, I., Jr., Barrett, S.F., Hickson, I.D. and Fornace, A.J., Jr. Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol. Cell Biol. 11 (1991) 1009–1016.

    PubMed  CAS  Google Scholar 

  24. Tran, H., Brunet, A., Grenier, J.M., Datta, S.R., Fornace, A.J., Jr., DiStefano, P.S., Chiang, L.W. and Greenberg, M.E. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296 (2002) 530–534.

    Article  PubMed  CAS  Google Scholar 

  25. Jiang, F., Li, P., Fornace, A.J., Jr., Nicosia, S.V. and Bai, W. G2/M arrest by 1,25-dihydroxyvitamin D3 in ovarian cancer cells mediated through the induction of GADD45 via an exonic enhancer. J. Biol. Chem. 278 (2003) 48030–48040.

    Article  PubMed  CAS  Google Scholar 

  26. Jiang, M., Fernandez, S., Jerome, W.G., He, Y., Yu, X., Cai, H., Boone, B., Yi, Y., Magnuson, M.A., Roy-Burman, P., Matusik, R.J., Shappell, S.B. and Hayward, S.W. Disruption of PPARgamma signaling results in mouse prostatic intraepithelial neoplasia involving active autophagy. Cell Death Differ. 17 (2010) 469–481.

    Article  PubMed  CAS  Google Scholar 

  27. Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A. and Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103 (2000) 843–852.

    Article  PubMed  CAS  Google Scholar 

  28. Kumala, S., Niemiec, P., Widel, M., Hancock, R. and Rzeszowska-Wolny, J. Apoptosis and clonogenic survival in three tumour cell lines exposed to gamma rays or chemical genotoxic agents. Cell. Mol. Biol. Lett. 8 (2003) 655–665.

    PubMed  Google Scholar 

  29. Kastan, M.B., Zhan, Q., el-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B. and Fornace, A.J., Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxiatelangiectasia. Cell 71 (1992) 587–597.

    Article  PubMed  CAS  Google Scholar 

  30. Tachiiri, S., Katagiri, T., Tsunoda, T., Oya, N., Hiraoka, M. and Nakamura, Y. Analysis of gene-expression profiles after gamma irradiation of normal human fibroblasts. Int. J. Radiat. Oncol. Biol. Phys. 64 (2006) 272–279.

    Article  PubMed  CAS  Google Scholar 

  31. Hollander, M.C. and Fornace, A.J., Jr. Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene 21 (2002) 6228–6233.

    Article  PubMed  CAS  Google Scholar 

  32. Jung, H.J., Kim, E.H., Mun, J.Y., Park, S., Smith, M.L., Han, S.S. and Seo, Y.R. Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene 26 (2007) 7517–7525.

    Article  PubMed  CAS  Google Scholar 

  33. Rai, K., Huggins, I.J., James, S.R., Karpf, A.R., Jones, D.A. and Cairns, B.R. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135 (2008) 1201–1212.

    Article  PubMed  CAS  Google Scholar 

  34. Barreto, G., Schafer, A., Marhold, J., Stach, D., Swaminathan, S.K., Handa, V., Doderlein, G., Maltry, N., Wu, W., Lyko, F. and Niehrs, C. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445 (2007) 671–675.

    Article  PubMed  CAS  Google Scholar 

  35. Jin, S.G., Guo, C. and Pfeifer, G.P. GADD45A does not promote DNA demethylation. PLoS Genet. 4 (2008) e1000013.

    Article  PubMed  Google Scholar 

  36. Hollander, M.C., Sheikh, M.S., Bulavin, D.V., Lundgren, K., Augeri-Henmueller, L., Shehee, R., Molinaro, T.A., Kim, K.E., Tolosa, E., Ashwell, J.D., Rosenberg, M.P., Zhan, Q., Fernandez-Salguero, P.M., Morgan, W.F., Deng, C.X. and Fornace, A.J., Jr. Genomic instability in Gadd45a-deficient mice. Nat. Genet. 23 (1999) 176–184.

    Article  PubMed  CAS  Google Scholar 

  37. Gupta, M., Gupta, S.K., Balliet, A.G., Hollander, M.C., Fornace, A.J., Hoffman, B. and Liebermann, D.A. Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 24 (2005) 7170–7179.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chawnshang Chang.

Additional information

These authors contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, SJ., Lee, YF., Ting, HJ. et al. Deficiency in TR4 nuclear receptor abrogates Gadd45a expression and increases cytotoxicity induced by ionizing radiation. Cell Mol Biol Lett 17, 309–322 (2012). https://doi.org/10.2478/s11658-012-0012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0012-9

Key words