Skip to main content

Synergistic effects of amyloid peptides and lead on human neuroblastoma cells

Abstract

Aggregated amyloid peptides (AP), major components of senile plaques, have been considered to play a very important and crucial role in the development and neuro-pathogenesis of Alzheimer’s disease (AD). In the present in vitro, study the synergistic effects of Pb2+, a heavy metal, and AP on the human neuroblastoma SH-SY5Y cells were investigated. The cells treated with Pb2+ (0.01–10 μM) alone exhibited a significant decrease in viability and IC50 was 5 μM. A similar decrease in viability was also observed when the cells were exposed to AP, Aβ1–40 (20–120 μM) and Aβ25-35 (2.5–15 μM) for 48 hrs. The IC50 values were 60 μM and 7.5 μM for Aβ1–40 and Aβ25–35 respectively. To assess the synergistic effects the cells were exposed to IC50 of both AP and Pb2+, which resulted in further reduction of the viability. The study was extended to determine the lactate dehydrogenase (LDH) release to assess the cytotoxic effects, 8-isoprostane for extent of oxidative damage, COX 1 and 2 for inflammation related changes, p53 protein for DNA damage and protein kinases A and C for signal transduction. The data suggest that the toxic effects of AP were most potent in the presence of Pb2+, resulting in an aggravated clinical pathological condition. This could be attributed to the oxidative stress, inflammation neuronal apoptosis and an alteration in the activities of the signaling enzymes.

Abbreviations

AD:

Alzheimer’s disease

Aβ:

β-amyloid peptide

AP:

aggregated amyloid peptides

APP:

amyloid precursor protein

COX:

cyclooxygenase

LDH:

lactate dehydrogenase

Pb2+ :

lead

PK:

protein kinase

ROS:

reactive oxygen species

References

  1. Lesné S, Koh, M.T., Kotilinek, L., Kayed, R., Glabe, C.G., Yang, A., Gallagher, M. and Ashe K.H. A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440 (2006) 352–357.

    Article  Google Scholar 

  2. Lee, V.M., Goedert M. and Trojanowski J.Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24 (2001) 1121–1159.

    PubMed  Article  CAS  Google Scholar 

  3. Selkoe, D.J. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J. Alzheimers Dis. 3 (2001) 75–80.

    PubMed  CAS  Google Scholar 

  4. Hardy, J. and Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 297 (2002) 353–356.

    PubMed  Article  CAS  Google Scholar 

  5. Abramov, A.Y., Canevari, L. and Duchen, M.R. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 15 (2003) 5088–5095.

    Google Scholar 

  6. Crack, P.J., Cimdins, K., Ali, U., Hertzog, P.J. and Iannello, R.C. Lack of glutathione peroxidase-1 exacerbates abeta-mediated neurotoxicity in cortical neurons. J. Neural Transm. 113 (2006) 645–657.

    PubMed  Article  CAS  Google Scholar 

  7. Fukui, K., Takatsu, H., Shinkai, T., Suzuki, S., Abe, K. and Urano, S. Appearance of amyloid beta-like substances and delayed-type apoptosis in rat hippocampus CA1 region through aging and oxidative stress. J. Alzheimers Dis. 8 (2005) 299–309.

    PubMed  CAS  Google Scholar 

  8. Kadowaki, H., Nishitoh, H., Urano, F., Sadamitsu, C., Matsuzawa, A., Takeda, K., Masutani, H., Yodoi, J., Urano, Y., Nagano, T. and Ichijo, H. Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 12 (2005) 19–24.

    PubMed  Article  CAS  Google Scholar 

  9. Selkoe, D.J. Alzheimer’s disease: genotypes, phenotypes and treatments. Science, 275 (1997) 630–631.

    PubMed  Article  CAS  Google Scholar 

  10. Cummings, J.L., Vinters, H.V., Cole, G.M. and Khachaturian, Z.S. Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology, 51 (1998) S2–S17.

    PubMed  Article  CAS  Google Scholar 

  11. Klein, W.L., Kraft, G.A. and Finch, C.E. Targeting small abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci. 24 (2001) 219–224.

    PubMed  Article  CAS  Google Scholar 

  12. Kelly, B.L. and Ferreira, A. Beta-amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J. Biol. Chem. 281 (2006) 28079–28089.

    PubMed  Article  CAS  Google Scholar 

  13. Shih T.M. and Hamin N. Chronic lead exposure in mature animals: neurochemical correlates. Life Sci. 21 (1978) 877–888.

    Article  Google Scholar 

  14. Silbergeld, E.K. and Goldberg, A. Hyperacidity: lead induced behavior disorder. Environ. Health Perspect. 7 (1974) 227–232.

    PubMed  Article  CAS  Google Scholar 

  15. Nihei, M.K. and Guilarte, T.R. Molecular mechanisms of low-level Pb2+ neurotoxicity. In: Handbook of Neurotoxicology, 1 (2002) 107–133.

    CAS  Google Scholar 

  16. Platt, B. Experimental approaches to assess metallotoxicity and aging in models of Alzheimer’s disease. J. Alzheimers Dis. 10 (2006) 203–213.

    PubMed  Google Scholar 

  17. Chellu, S.C., Mohan, C.V., Khamisi, C. and Challa, S. Lead induced cell death of human neuroblastoma cells involves GSH deprivation. Cell. Mol. Biol. Lett. 10 (2005) 413–423.

    Google Scholar 

  18. Tang, J., Xu, H., Fan, X., Li, D., Rancourt, D., Zhou, G., Li, Z. and Yang, L. Embryonic stem cell-derived neural precursor cells improve memory dysfunction in A-beta (1–40) injured rats. Neurosci. Res. 62 (2008) 86–96.

    PubMed  Article  CAS  Google Scholar 

  19. Zhang, L., Xing, D., Zhu, D. and Chen, Q. Low-Power Laser irradiation inhibiting A-beta 25–35 induced PC12 cell apoptosis via PKC activation. Cell Physiol. Biochem. 22 (2008) 215–222.

    PubMed  Article  CAS  Google Scholar 

  20. Shimohama, S. Apoptosis in Alzheimer’s disease: an update. Apoptosis, 5 (2000) 9–16.

    PubMed  Article  CAS  Google Scholar 

  21. Roth, K.A. Caspases, apoptosis, and Alzheimer’s disease: causation, correlation, and confusion. J. Neuropathol. Exp. 60 (2001) 829–838.

    CAS  Google Scholar 

  22. Khalil, N., Wilson, J. W., Talbott, E.O., Morrow, L.A., Hochberg, M.C., Hillier, T.A., Muldoon, S.B., Cummings, S.R. and Cauley, J.A. Association of blood lead concentrations with mortality in older women: a pospective cohort study. Environ. Health, 8 (2009) 1–10.

    Article  Google Scholar 

  23. Yatin, S.M., Varadarajan, S., Link, C.D. and Butterfield, D.A. In vitro, and in vivo, oxidative stress associated with Alzheimer’s amyloid beta-peptide (1–42). Neurobiol. Aging, 20 (1999) 325–330.

    PubMed  Article  CAS  Google Scholar 

  24. Cardoso, S.M., Santos, S., Swerdlow, R.H. and Oliveira, C.R. Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB 15 (2001) 1439–1441.

    CAS  Google Scholar 

  25. Lesne, S., Koh, M.T., Kotilinek, L., Kayed, R., Glabe, C.G., Yang, A., Gallagher, M. and Ashe, K.H. A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440 (2006) 352–357.

    PubMed  Article  CAS  Google Scholar 

  26. Sonnen, J.A., Breitner, J.C., Lovell, M.A., Markesbery, W.R., Quinn, J.F. and Montine, T.J. Free radical-mediated damage to brain in Alzheimer’s disease and its transgenic mouse models. Free Radical Biol. Med. 45 (2008) 219–230.

    Article  CAS  Google Scholar 

  27. Gilgun-Sherki, Y., Melamed, E. and Offen, D. Antioxidant treatment in Alzheimer’s disease: current state. J. Mol. Neurosci. 21 (2003) 1–11.

    PubMed  Article  CAS  Google Scholar 

  28. Morrow, J.D., Hill, K.E., Burk, R.F., Nammour, T.M., Badr, K.F. and Roberts, L.J. A series of prostaglandin F2-like compounds are produced in vivo, in humans by a noncyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. U.S.A. 87 (1990) 9383–9387.

    PubMed  Article  CAS  Google Scholar 

  29. Roberts, L.J. and Morrow, J.D. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic. Biol. Med. 28 (2000) 505–513.

    PubMed  Article  CAS  Google Scholar 

  30. Basu S. F2-isoprostane induced prostaglandin formation in the rabbit. Free Radic. Res. 40 (2006) 273–277.

    PubMed  Article  CAS  Google Scholar 

  31. Basu, S. Isoprostanes: novel bioactive products of lipid peroxidation. Free Radic. Res. 38 (2004) 105–122.

    PubMed  Article  CAS  Google Scholar 

  32. Montuschi, P., Barnes, P.J. and Roberts, L.J. Isoprostanes: markers and mediators of oxidative stress. FASEB J. 18 (2004) 1791–1800.

    PubMed  Article  CAS  Google Scholar 

  33. Qin, W., Ho, L., Pompl, P.N., Peng, Y., Zhao, Z., Xiang, Z., Robakis, N.K., Shioi, J., Suh, J. and Pasinetti, G.M. Cyclooxygenase COX-2 and COX-1 potentiate betaamyloid peptide generation through mechanisms that involve gamma-secretase activity. J. Biol. Chem. 278 (2003) 50970–50977.

    PubMed  Article  CAS  Google Scholar 

  34. Xiang, Z., Ho, L., Yemul, S., Zhao, Z., Qing, W., Pompl, P., Kelley, K., Dang, A., Teplow, D. and Pasinetti, G.M. Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer’s disease neuropathology. Gene Expr. 10 (2002) 271–278.

    PubMed  CAS  Google Scholar 

  35. Alvarez, S., Serramia, M.J., Fresno, M. and Munoz Fernandez, M. Human immunodeficiency virus type 1 envelope glycoprotein 120 induces cyclooxygenase-2 expression in neuroblastoma cells through a nuclear factor kappa B and activating protein1 mediated mechanism. J. Neurochem. 94 (2005) 850–861.

    PubMed  Article  CAS  Google Scholar 

  36. Alvarez, S., Blanco, A., Kern, F., Fresno, M., Munoz Fernandez, M.A. HIV-2 induces NF-kappa B activation and cyclooxygenase-2 expression in human astroglial cells. Virology, 380 (2008) 144–151.

    PubMed  Article  CAS  Google Scholar 

  37. Tatton, W.G. and Olanow, C.W. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochem. Biophys. Acta, 1410 (1999) 195–213.

    PubMed  Article  CAS  Google Scholar 

  38. Zhang, Y., McLaughlin, R., Goodyear, C., LeBlanc, A. Selective cytotoxicity of intracellular amyloid beta peptide 1–42 through p53 and Bax in cultured primary human neurons. J. Cell Biol. 156 (2002) 519–529.

    PubMed  Article  CAS  Google Scholar 

  39. Hecquet, C., Lefevre, G., Valtink, M., Engelmann, K. and Mascarelli, F. Cyclic AMP inhibits the proliferation of retinal pigmented epithelial cells through the inhibition of ERK1/2 in a PKA-independent manner. Oncogene 21 (2002) 6101–6112.

    PubMed  Article  CAS  Google Scholar 

  40. Nishihara, H., Kizaka-Kondoh, S., Insel P.A. and Eckmann, L. Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cyclic AMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 8921–8926.

    PubMed  Article  CAS  Google Scholar 

  41. Cardell, M. and Wieloch, T. Time course of the translocation and inhibition of protein kinase C during complete cerebral ischemia in the rat. J. Neurochem. 61 (1993) 1308–1314.

    PubMed  Article  CAS  Google Scholar 

  42. Busto, R., Globus, M.Y., Neary, J.T. and Ginsberg, M.D. Regional alterations of protein kinase C activity following transient cerebral ischemia: effects of intra-ischemic brain temperature modulation. J. Neurochem. 63 (1994) 1095–1103.

    PubMed  Article  CAS  Google Scholar 

  43. Liang, Z., Liu, F., Grundke-Iqbal, I., Iqbal, K. and Gong, C.X. Downregulation of cAMP-dependent protein Kinase by over-activated calpain in Alzheimer diseased brain. J. Neurochem. 103 (2007) 2462–2470.

    PubMed  Article  CAS  Google Scholar 

  44. Gong, B., Cao, Z., Zheng, P., Vitolo, O.V. and Liu, S. Ubiquitin hydrolase uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell, 126 (2006) 775–788.

    PubMed  Article  CAS  Google Scholar 

  45. Wang, P., Chen, L.L., Yan, H. and Li, J.C. Trichosanthin suppresses HeLa cell proliferation through inhibition of the PKC/MAPK signaling pathway. Cell Biol. Toxicol. 25 (2009) 479–488.

    PubMed  Article  CAS  Google Scholar 

  46. Iijima-Ando, K., Hearn, S.A., Shenton, C., Gatt, A., Zhao, L. and Iijima, K. Mitochondrial mis-localization underlies Aβ-42 induced neuronal dysfunction in a drosophila model of Alzheimer’s disease. PLoS One, 4 (2009) 1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chellu S. Chetty.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suresh, C., Johnson, J., Mohan, R. et al. Synergistic effects of amyloid peptides and lead on human neuroblastoma cells. Cell Mol Biol Lett 17, 408–421 (2012). https://doi.org/10.2478/s11658-012-0018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0018-3

Key words

  • Amyloid peptides
  • Lead
  • LDH
  • Oxidative stress
  • Inflammation
  • Neuronal apoptosis
  • Signaling