Skip to main content
  • Short Communication
  • Published:

SHP-2 and PTP-pest induction during Rb-E2F associated apoptosis

Abstract

Apoptosis is intimately connected to cell cycle regulation via the Retinoblastoma (Rb)-E2F pathway and thereby serves an essential role in tumor suppression by eliminating aberrant hyperproliferative cells. Upon loss of Rb activity, an apoptotic response can be elicited through both p53-dependent and p53-independent mechanisms. While much of this apoptotic response has been attributed to the p19ARF/p53 pathway, increasing evidence has supported the role of protein tyrosine phosphatases (PTPs) in contributing to the initiation of the Rb-E2F-associated apoptotic response. One protein tyrosine phosphatase, PTP-1B, which is induced by the Rb-E2F pathway, has been shown to contribute to a p53-independent apoptotic pathway by inactivating focal adhesion kinase. This report identifies two additional PTPs, SHP-2 and PTP-PEST, that are also directly activated by the Rb-E2F pathway and which can contribute to signal transduction during p53-independent apoptosis.

Abbreviations

4OHT:

4-hydroxytamoxifen

dnE2F:

dominant negative mutant of E2F-1

ER:

estrogen receptor

FAK:

focal adhesion kinase

PTP:

protein tyrosine phosphatase

PTP-PEST:

protein tyrosine phosphatase rich in proline, glutamic acid/aspartic acid, and serine/threonine residues

Rb:

retinoblastoma protein

SHP-2:

SH2 domain-containing tyrosine phosphatase

References

  1. Ghavami, S., Hashemi, M., Ande, S.R., Yeganeh, B., Xiao, W., Eshraghi, M., Bus, C.J., Kadkhoda, K., Wiechec, E., Halayko, A.J. and Los, M. Apoptosis and cancer: mutations within caspase genes. J. Med. Genet. 46 (2009) 497–510.

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan, D. and Weinberg, R.A. The hallmarks of cancer. Cell 100 (2000) 57–70.

    Article  PubMed  CAS  Google Scholar 

  3. Lazzerini Denchi, E. and Helin, K. E2F1 is crucial for E2F-dependent apoptosis. EMBO Rep. 6 (2005) 661–668.

    Article  PubMed  CAS  Google Scholar 

  4. Nahle, Z., Polakoff, J., Davuluri, R.V., McCurrach, M.E., Jacobson, M.D., Narita, M., Zhang, M.Q., Lazebnik, Y., Bar-Sagi, D. and Lowe, S.W. Direct coupling of the cell cycle and cell death machinery by E2F. Nat. Cell Biol. 4 (2002) 859–864.

    Article  PubMed  CAS  Google Scholar 

  5. Putzer, B.M. E2F1 death pathways as targets for cancer therapy. J. Cell. Mol. Med. 11 (2007) 239–251.

    Article  PubMed  CAS  Google Scholar 

  6. Stevens, C. and La Thangue, N.B. E2F and cell cycle control: a double-edged sword. Arch. Biochem. Biophys. 412 (2003) 157–169.

    Article  PubMed  CAS  Google Scholar 

  7. Hallstrom, T.C. and Nevins, J.R. Balancing the decision of cell proliferation and cell fate. Cell Cycle 8 (2009) 532–535.

    Article  PubMed  CAS  Google Scholar 

  8. Black, E.P., Hallstrom, T., Dressman, H.K., West, M. and Nevins, J.R. Distinctions in the specificity of E2F function revealed by gene expression signatures. Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 15948–15953.

    Article  PubMed  CAS  Google Scholar 

  9. Wu, Z., Zheng, S. and Yu, Q. The E2F family and the role of E2F1 in apoptosis. Int. J. Biochem. Cell Biol. 41 (2009) 2389–2397.

    Article  PubMed  CAS  Google Scholar 

  10. Luo, R.X., Postigo, A.A. and Dean, D.C. Rb interacts with histone deacetylase to repress transcription. Cell 92 (1998) 463–473.

    Article  PubMed  CAS  Google Scholar 

  11. Lieman, J.H., Worley, L.A. and Harbour, J.W. Loss of Rb-E2F repression results in caspase-8-mediated apoptosis through inactivation of focal adhesion kinase. J. Biol. Chem. 280 (2005) 10484–10490.

    Article  PubMed  CAS  Google Scholar 

  12. Young, A.P., Nagarajan, R. and Longmore, G.D. Mechanisms of transcriptional regulation by Rb-E2F segregate by biological pathway. Oncogene 22 (2003) 7209–7217.

    Article  PubMed  CAS  Google Scholar 

  13. Parsons, J.T. Focal adhesion kinase: the first ten years. J. Cell Sci. 116 (2003) 1409–1416.

    Article  PubMed  CAS  Google Scholar 

  14. Golubovskaya, V.M., Finch, R. and Cance, W.G. Direct interaction of the N-terminal domain of focal adhesion kinase with the N-terminal transactivation domain of p53. J. Biol. Chem. 280 (2005) 25008–25021.

    Article  PubMed  CAS  Google Scholar 

  15. Zouq, N.K., Keeble, J.A., Lindsay, J., Valentijn, A.J., Zhang, L., Mills, D., Turner, C.E., Streuli, C.H. and Gilmore, A.P. FAK engages multiple pathways to maintain survival of fibroblasts and epithelia: differential roles for paxillin and p130Cas. J. Cell Sci. 122 (2009) 357–367.

    Article  PubMed  CAS  Google Scholar 

  16. Attwell, S., Roskelley, C. and Dedhar, S. The integrin-linked kinase (ILK) suppresses anoikis. Oncogene 19 (2000) 3811–3815.

    Article  PubMed  CAS  Google Scholar 

  17. van Nimwegen, M.J. and van de Water, B. Focal adhesion kinase: a potential target in cancer therapy. Biochem. Pharmacol. 73 (2007) 597–609.

    Article  PubMed  Google Scholar 

  18. Halle, M., Tremblay, M.L. and Meng, T.C. Protein tyrosine phosphatases: emerging regulators of apoptosis. Cell Cycle 6 (2007) 2773–2781.

    Article  PubMed  CAS  Google Scholar 

  19. Halle, M., Liu, Y.C., Hardy, S., Theberge, J.F., Blanchetot, C., Bourdeau, A., Meng, T.C. and Tremblay, M.L. Caspase-3 regulates catalytic activity and scaffolding functions of the protein tyrosine phosphatase PEST, a novel modulator of the apoptotic response. Mol. Cell Biol. 27 (2007) 1172–1190.

    Article  PubMed  CAS  Google Scholar 

  20. Marin, T.M., Clemente, C.F., Santos, A.M., Picardi, P.K., Pascoal, V.D., Lopes-Cendes, I., Saad, M.J. and Franchini, K.G. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways Circ. Res. 103 (2008) 813–824.

    Article  PubMed  CAS  Google Scholar 

  21. Ostman, A., Hellberg, C. and Bohmer, F.D. Protein-tyrosine phosphatases and cancer. Na.t Rev. Cancer 6 (2006) 307–320.

    Article  Google Scholar 

  22. Shen, Y., Schneider, G., Cloutier, J.F., Veillette, A. and Schaller, M.D. Direct association of protein-tyrosine phosphatase PTP-PEST with paxillin. J. Biol. Chem. 273 (1998) 6474–6481.

    Article  PubMed  CAS  Google Scholar 

  23. Yu, D.H., Qu, C.K., Henegariu, O., Lu, X. and Feng, G.S. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem. 273 (1998) 21125–21131.

    Article  PubMed  CAS  Google Scholar 

  24. Rafiq, K., Kolpakov, M.A., Abdelfettah, M., Streblow, D.N., Hassid, A., Dell’Italia, L.J. and Sabri, A. Role of protein-tyrosine phosphatase SHP2 in focal adhesion kinase down-regulation during neutrophil cathepsin G-induced cardiomyocytes anoikis. J. Biol. Chem. 281 (2006) 19781–19792.

    Article  PubMed  CAS  Google Scholar 

  25. Julien, S.G., Dube, N., Hardy, S. and Tremblay, M.L. Inside the human cancer tyrosine phosphatome. Nat. Rev. Cancer 11 (2011) 35–49.

    Article  PubMed  CAS  Google Scholar 

  26. Ma, D., Zhou, P. and Harbour, J.W. Distinct mechanisms for regulating the tumor suppressor and antiapoptotic functions of Rb. J. Biol. Chem. 278 (2003) 19358–19366.

    Article  PubMed  CAS  Google Scholar 

  27. Bentires-Alj, M., Paez, J.G., David, F.S., Keilhack, H., Halmos, B., Naoki, K., Maris, J.M., Richardson, A., Bardelli, A., Sugarbaker, D.J., Richards, W.G., Du, J., Girard, L., Minna, J.D., Loh, M.L., Fisher, D.E., Velculescu, V.E., Vogelstein, B., Meyerson, M., Sellers, W.R. and Neel, B.G. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 64 (2004) 8816–8820.

    Article  PubMed  CAS  Google Scholar 

  28. Mohi, M.G. and Neel, B.G. The role of Shp2 (PTPN11) in cancer. Curr. Opin. Genet. Dev. 17 (2007) 23–30.

    Article  PubMed  CAS  Google Scholar 

  29. Angers-Loustau, A., Cote, J.F. and Tremblay, M.L. Roles of protein tyrosine phosphatases in cell migration and adhesion. Biochem. Cell Biol. 77 (1999) 493–505.

    Article  PubMed  CAS  Google Scholar 

  30. Zheng, Y., Yang, W., Xia, Y., Hawke, D., Liu, D.X. and Lu, Z. Ras-induced and extracellular signal-regulated kinase 1 and 2 phosphorylation-dependent isomerization of protein tyrosine phosphatase (PTP)-PEST by PIN1 promotes FAK dephosphorylation by PTP-PEST. Mol. Cell Biol. 31 (2011) 4258–4269.

    Article  PubMed  CAS  Google Scholar 

  31. Thompson, L.J., Jiang, J., Madamanchi, N., Runge, M.S. and Patterson, C. PTP-epsilon, a tyrosine phosphatase expressed in endothelium, negatively regulates endothelial cell proliferation. Am. J. Physiol. Heart Circ. Physiol. 281 (2001) H396–403.

    PubMed  CAS  Google Scholar 

  32. Jiang, Z.X. and Zhang, Z.Y. Targeting PTPs with small molecule inhibitors in cancer treatment. Cancer Metastasis Rev. 27 (2008) 263–272.

    Article  PubMed  CAS  Google Scholar 

  33. Lessard, L., Stuible, M. and Tremblay, M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta 1804 (2010) 613–619.

    PubMed  CAS  Google Scholar 

  34. Hubbard, S.R. and Miller, W.T. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr. Opin. Cell Biol. 19 (2007) 117–123.

    Article  PubMed  CAS  Google Scholar 

  35. Lemmon, M.A. and Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141 (2010) 1117–1134.

    Article  PubMed  CAS  Google Scholar 

  36. Hunter, T. Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 21 (2009) 140–146.

    Article  PubMed  CAS  Google Scholar 

  37. Tonks, N.K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7 (2006) 833–846.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Lieman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, L.D., Pena, K., Kim, D.J. et al. SHP-2 and PTP-pest induction during Rb-E2F associated apoptosis. Cell Mol Biol Lett 17, 422–432 (2012). https://doi.org/10.2478/s11658-012-0020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0020-9

Key words