Skip to main content
  • Research Article
  • Published:

Alterations of the Hsp70/Hsp90 chaperone and the HOP/CHIP co-chaperone system in cancer


Activation of the Hsp90 chaperone system is a characteristic of cancer cells. The regulation of chaperone activities involves their interaction with cochaperones; therefore we investigated the expression of Hsp70 and Hsp90 and their specific co-chaperones HOP and CHIP in cancer cell lines and primary cancers. Inhibition of Hsp90 by 17AAG increased the levels of Hsp70, Hsp90 and HOP but not CHIP mRNA in cancer cells. These changes are linked to activation of the HSF1 transcription factor and we show that the HOP promoter contains HSF1 binding sites, and that HSF1 binding to the HOP promoter is increased following 17AAG. The lack of alteration in the co-chaperone CHIP is explained by a lack of HSF response elements in the CHIP promoter. Non-proliferating cells expressed higher levels of CHIP and lower HOP, Hsp70 and Hsp90 levels compared to proliferating cells. Decreased expression of CHIP in proliferating cancer cells is in keeping with its proposed tumor suppressor properties, while over-expression of HOP in proliferating cells may contribute to excessive Hsp90 activity and stabilization of client proteins in tumors. In a panel of colorectal cancer samples, increased expression of Hsp70 and an increased ratio of HOP to CHIP were found, and were associated with decreased median survival. These data indicate that multiple changes occur in the chaperone/co-chaperone system in cancer that impact patient survival. It is likely that the ability to identify individual alterations to this system will be beneficial for treatment strategy decisions, particularly those that employ chaperone inhibitors.



C terminus of Hsc70-interacting protein


Hsp70/Hsp90 organizing protein


heat shock element


heat shock factor 1


heat shock protein 70


heat shock protein 90


quantitative real-time polymerase chain reaction




  1. Ciocca, D.R. and Calderwood, S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10 (2005) 86–103.

    Article  PubMed  CAS  Google Scholar 

  2. Workman, P. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol. Med. 10 (2004) 47–51.

    Article  PubMed  CAS  Google Scholar 

  3. Hernandez, M.P., Sullivan, W.P. and Toft, D.O. The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J. Biol. Chem. 277 (2002) 38294–38304.

    Article  PubMed  CAS  Google Scholar 

  4. Kubota, H., Yamamoto, S., Itoh, E., Abe, Y., Nakamura, A., Izumi, Y., Okada, H., Iida, M., Nanjo, H., Itoh, H. and Yamamoto, Y. Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress Chaperones 15 (2010) 1003–1011.

    Article  PubMed  CAS  Google Scholar 

  5. Sun, W., Xing, B., Sun, Y., Du, X., Lu, M., Hao, C., Lu, Z., Mi, W., Wu, S., Wei, H., Gao, X., Zhu, Y., Jiang, Y., Qian, X. and He, F. Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Mol. Cell. Proteomics 6 (2007) 1798–1808.

    Article  PubMed  CAS  Google Scholar 

  6. Erlich, R.B., Kahn, S.A., Lima, F.R., Muras, A.G., Martins, R.A., Linden, R., Chiarini, L.B., Martins, V.R. and Moura Neto, V. STI1 promotes glioma proliferation through MAPK and PI3K pathways. Glia 55 (2007) 1690–1698.

    Article  PubMed  Google Scholar 

  7. Kajiro, M., Hirota, R., Nakajima, Y., Kawanowa, K., So-ma, K., Ito, I., Yamaguchi, Y., Ohie, S.H., Kobayashi, Y., Seino, Y., Kawano, M., Kawabe, Y., Takei, H., Hayashi, S., Kurosumi, M., Murayama, A., Kimura, K. and Yanagisawa, J. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat. Cell. Biol. 11 (2009) 312–319.

    Article  PubMed  CAS  Google Scholar 

  8. Kundrat, L. and Regan, L. Balance between folding and degradation for Hsp90-dependent client proteins: a key role for CHIP. Biochemistry 49 (2010) 7428–7438.

    Article  PubMed  CAS  Google Scholar 

  9. Scheufler, C., Brinker, A., Bourenkov, G., Pegoraro, S., Moroder, L., Bartunik, H., Hartl, F.U. and Moarefi, I. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101 (2000) 199–210.

    Article  PubMed  CAS  Google Scholar 

  10. Muller, P., Hrstka, R., Coomber, D., Lane, D.P. and Vojtesek, B. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27 (2008) 3371–3383.

    Article  PubMed  CAS  Google Scholar 

  11. Banks, L., Matlashewski, G. and Crawford, L. Isolation of human-p53-specific monoclonal antibodies and their use in the studies of human p53 expression. Eur. J. Biochem. 159 (1986) 529–534.

    Article  PubMed  CAS  Google Scholar 

  12. Trepel, J., Mollapour, M., Giaccone, G. and Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer 10 (2010) 537–549.

    Article  PubMed  CAS  Google Scholar 

  13. Pick, E., Kluger, Y., Giltnane, J.M., Moeder, C., Camp, R.L., Rimm, D.L. and Kluger, H.M. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 67 (2007) 2932–2937.

    Article  PubMed  CAS  Google Scholar 

  14. Li, C.F., Huang, W.W., Wu, J.M., Yu, S.C., Hu, T.H., Uen, Y.H., Tian, Y.F., Lin, C.N., Lu, D., Fang, F.M. and Huang, H.Y. Heat shock protein 90 overexpression independently predicts inferior disease-free survival with differential expression of the alpha and beta isoforms in gastrointestinal stromal tumors. Clin. Cancer Res. 14 (2008) 7822–7831.

    Article  PubMed  CAS  Google Scholar 

  15. Kang, G.H., Lee, E.J., Jang, K.T., Kim, K.M., Park, C.K., Lee, C.S., Kang, D.Y., Lee, S.H., Sohn, T.S. and Kim, S. Expression of HSP90 in gastrointestinal stromal tumours and mesenchymal tumours. Histopathology 56 (2010) 694–701.

    Article  PubMed  Google Scholar 

  16. Stankiewicz, M., Nikolay, R., Rybin, V. and Mayer, M.P. CHIP participates in protein triage decisions by preferentially ubiquitinating Hsp70-bound substrates. FEBS J. 277 (2010) 3353–3367.

    Article  PubMed  CAS  Google Scholar 

  17. Santagata, S., Hu, R., Lin, N.U., Mendillo, M.L., Collins, L.C., Hankinson, S.E., Schnitt, S.J., Whitesell, L., Tamimi, R.M., Lindquist, S. and Ince, T.A. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc. Natl. Acad. Sci. USA 108 (2011) 18378–18383.

    Article  PubMed  CAS  Google Scholar 

  18. Dai, C., Whitesell, L., Rogers, A.B. and Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130 (2007) 1005–1018.

    Article  PubMed  CAS  Google Scholar 

  19. Zou, J., Guo, Y., Guettouche, T., Smith, D.F. and Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94 (1998) 471–480.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Borivoj Vojtesek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruckova, E., Muller, P., Nenutil, R. et al. Alterations of the Hsp70/Hsp90 chaperone and the HOP/CHIP co-chaperone system in cancer. Cell Mol Biol Lett 17, 446–458 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words