Skip to main content

Cannabinoid-like anti-inflammatory compounds from flax fiber

Abstract

Flax is a valuable source of fibers, linseed and oil. The compounds of the latter two products have already been widely examined and have been proven to possess many health-beneficial properties. In the course of analysis of fibers extract from previously generated transgenic plants overproducing phenylpropanoids a new terpenoid compound was discovered.

The UV spectra and the retention time in UPLC analysis of this new compound reveal similarity to a cannabinoid-like compound, probably cannabidiol (CBD). This was confirmed by finding two ions at m/z 174.1 and 231.2 in mass spectra analysis. Further confirmation of the nature of the compound was based on a biological activity assay. It was found that the compound affects the expression of genes involved in inflammatory processes in mouse and human fibroblasts and likely the CBD from Cannabis sativa activates the specific peripheral cannabinoid receptor 2 (CB2) gene expression. Besides fibers, the compound was also found in all other flax tissues. It should be pointed out that the industrial process of fabric production does not affect CBD activity.

The presented data suggest for the first time that flax products can be a source of biologically active cannabinoid-like compounds that are able to influence the cell immunological response. These findings might open up many new applications for medical flax products, especially for the fabric as a material for wound dressing with anti-inflammatory properties.

Abbreviations

ALA:

α-linoleic acid

CB1:

cannabinoid receptor 1

CB2:

cannabinoid receptor 2

CBC:

cannabichromene

CBCA:

cannabichromenic acid

CBD:

cannabidiol

CBDA:

cannabidiolic acid

CBGA:

cannabigerolic acid

CBN:

cannabinol

CHI:

chalcone isomerise

CHS:

chalcone synthase

CREB:

cAMP response element-binding

DEG:

differentially expressed genes

DFR:

dihydroflavonol reductase

DMEM:

Dulbecco’s Modified Eagle Medium

EDTA:

ethylenediaminetetraacetate

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

GC-MS:

gas chromatography-mass spectrometry

GPP:

geranyl pyrophosphate

HPLC:

high-performance liquid chromatography

IL1β:

interleukin 1β

IL6:

interleukin 6

IL8:

interleukin 8

IFN-γ:

interferon γ

IPP:

isopentenyl diphosphate

LPS:

lipopolysacharide

MCP-1:

monocyte chemotactic protein 1

NFκB:

nuclear factor κB

NHDF:

normal human dermal fibroblasts

OLA:

olivetolic acid

PBS:

phosphate buffered saline

PKA:

protein kinase A

PUFA:

polyunsaturated fatty acids

RQ:

relative quantification

RT PCR:

real-time polymerase chain reaction

SD:

standard deviation

SDG:

secoisolariciresinol diglucoside

SE:

standard error

SOCS-1:

suppressor of cytokine signaling 1

TFA:

trifluoroacetic acid

THC:

tetrahydrocannabinol

THCA:

Δ9-tetrahydrocannabinolic acid

TLR4:

Toll-like receptor 4

TNF-α:

tumor necrosis factor α

TNFR:

TNF receptor

UPLC:

ultra performance liquid chromatography

References

  1. 1.

    Prasad, K. Flaxseed and cardiovascular health. J. Cardiovasc. Pharmacol. 54 (2009) 369–377.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Prasad, K. Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed. Mol. Cell. Biochem. 168 (1997) 117–123.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Wang, L., Chen, J. and Thompson, L.U. The inhibitory effect of flaxseed on the growth and metastasis of estrogen receptor negative human breast cancer xenograftsis attributed to both its lignan and oil components, Int. J. Cancer 116 (2005) 793–798.

    Article  CAS  Google Scholar 

  4. 4.

    Muir, A.D. and Westcott, N.D. Flax, the genus Linum, Saskatchewan: T.F. Group, 2003.

    Google Scholar 

  5. 5.

    Huwiler, A. and Pfeilschifter, J. Lipids as targets for novel antiinflammatory therapies. Pharmacol. Ther. 124 (2009) 96–112.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Russo, G.L. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 77 (2009) 937–946.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Skorkowska-Telichowska, K., Zuk, M., Kulma, A., Bugajska-Prusak, A., Ratajczak, K., Gasiorowski, K. and Szopa, J. New dressing materials derived from transgenic flax products to treat long-standing venous ulcersa pilot study. Wound. Repair. Regen. 18 (2010) 168–719.

    PubMed  Article  Google Scholar 

  8. 8.

    Lorenc-Kukula, K., Amarowicz, R., Oszmianski, J., Doermann, P., Starzycki, M., Skala, J., Zuk, M., Kulma, A. and Szopa, J. Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J. Agric. Food Chem. 53 (2005) 3685–3692.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Raharjo, T.J., Chang, W.-T., Choi, Y.H., Peltenburg-Looman, A.M.G. and Verpoorte, R. Olivetol as product of a polyketide synthase in Cannabis sativa L. Plant Sci. 166 (2004) 381–385.

    Article  CAS  Google Scholar 

  10. 10.

    Sirikantaramas, S., Taura, F., Morimoto, S. and Shoyama, Y. Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr. Pharm. Biotechnol. 8 (2007) 237–243.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Mechoulam, R., Peters, M., Murillo-Rodriguez, E. and Hanus, L.O. Cannabidiol-recent advances. Chem. Biodivers. 4 (2007) 1678–1692.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Alexander, A., Smith, P.F. and Rosengren, R.J. Cannabinoids in the treatment of cancer. Cancer Lett. 285 (2009) 6–12.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Ligresti, A., Petrosino, S. and Di Marzo, V. From endocannabinoid profiling to ‘endocannabinoid therapeutics’. Curr. Opin. Chem. Biol. 13 (2009) 321–331.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Pacher, P., Batkai, S. and Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58 (2006) 389–462.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Zoratti, C., Kipmen-Korgun, D., Osibow, K., Malli, R. and Graier, W.F. Anandamide initiates Ca(2+) signaling via CB2 receptor linked to phospholipase C in calf pulmonary endothelial cells. Br. J. Pharmacol. 140 (2003) 1351–1362.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Rajesh, M., Mukhopadhyay, P., Batkai, S., Hasko, G., Liaudet, L., Huffman, J.W., Csiszar, A., Ungvari, Z., Mackie, K., Chatterjee, S. and Pacher, P. CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyteendothelial adhesion. Am. J. Physiol. Heart Circ. Physiol. 293 (2007) H2210–H2218.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Schatz, A.R., Lee, M., Condie, R.B., Pulaski, J.T. and Kaminski, N.E. Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system, Toxicol. Appl. Pharmacol. 142 (1997) 278–287.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Klein, T.W. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 5 (2005) 400–411.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Klein, T.W., Lane, B., Newton, C.A. and Friedman, H. The cannabinoid system and cytokine network. Proc. Soc. Exp. Biol. Med. 225 (2000) 1–8.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Derocq, J.M., Jbilo, O., Bouaboula, M., Segui, M., Clere, C. and Casellas, P. Genomic and functional changes induced by the activation of the peripheral cannabinoid receptor CB2 in the promyelocytic cells HL-60. Possible involvement of the CB2 receptor in cell differentiation. J. Biol. Chem. 275 (2000) 15621–15628.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Wrobel-Kwiatkowska, M., Zebrowski, J., Starzycki, M., Oszmianski, J. and Szopa, J. Engineering of PHB synthesis causes improved elastic properties of flax fibers. Biotechnol. Prog. 23 (2007) 269–277.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Lorenc-Kukula, K., Wrobel-Kwiatkowska, M., Starzycki, M. and Szopa, J. Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiol. Mol. Plant P. 70 (2007) 38–48.

    Article  CAS  Google Scholar 

  23. 23.

    Boba, A., Kulma, A., Kostyn, K., Starzycki, M., Starzycka, E. and Szopa, J. The influence of carotenoid biosynthesis modification on the Fusarium culmorum and Fusarium oxysporum resistance in flax. Physiol. Mol. Plant P. 76 (2011) 39–47.

    Article  CAS  Google Scholar 

  24. 24.

    Hazekamp, A., Peltenburg, A., Verpoorte, R. and Giroud, C. Chromatographic and Spectroscopic Data of Cannabinoids from Cannabis sativa L. J. Liq. Chromatog. R.T. 28 (2005) 2361–2382.

    Article  CAS  Google Scholar 

  25. 25.

    Gredes, T., Kunert-Keil, C., Dominiak, M., Gedrange, T., Wrobel-Kwiatkowska, M. and Szopa, J. The influence of biocomposites containing genetically modified flax fibers on gene expression in rat skeletal muscle. Biomed. Tech. (Berl). 55 323–329.

  26. 26.

    Klein, T.W., Newton, C., Larsen, K., Lu, L., Perkins, I., Nong, L. and Friedman, H. The cannabinoid system and immune modulation. J. Leukoc. Biol. 74 (2003) 486–496.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Klegeris, A., Bissonnette, C.J. and McGeer, P.L. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br. J. Pharmacol. 139 (2003) 775–786.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.C. and Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346 (1990) 561–564.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Munro, S., Thomas, K.L. and Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365 (1993) 61–65.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    McAllister, S.D. and Glass, M. CB1 and CB2 receptor-mediated signalling: a focus on endocannabinoids. Prostag. Leukotr. Ess. 66 (2002) 161–171.

    Article  CAS  Google Scholar 

  31. 31.

    Howlett, A.C. Cannabinoid receptor signaling. Handb. Exp. Pharmacol. (2005) 53–79.

  32. 32.

    Doyle, S.L. and O’Neill, L.A.J. Toll-like receptors: From the discovery of NF[kappa]B to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 72 (2006) 1102–1113.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Kawai, T. and Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 13 (2007) 460–469.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Libermann, T.A. and Baltimore, D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol. Cell. Biol. 10 (1990) 2327–2334.

    PubMed  CAS  Google Scholar 

  35. 35.

    Watts, T.H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23 (2005) 23–68.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Ryo, A., Suizu, F., Yoshida, Y., Perrem, K., Liou, Y.C., Wulf, G., Rottapel, R., Yamaoka, S. and Lu, K.P. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12 (2003) 1413–1426.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Kulma.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Styrczewska, M., Kulma, A., Ratajczak, K. et al. Cannabinoid-like anti-inflammatory compounds from flax fiber. Cell Mol Biol Lett 17, 479–499 (2012). https://doi.org/10.2478/s11658-012-0023-6

Download citation

Key words

  • Flax
  • Linum usitatissimum
  • Linen
  • Cannabinoid
  • Inflammation
  • Terpenoids
  • Flax fibers
  • Cannabinoid signaling