Skip to main content
  • Research article
  • Published:

Effects of lead chloride on human erythrocyte membranes and on kinetic anion sulphate and glutathione concentrations

Abstract

Our study concerns the effects of exposure to lead chloride on the morphology, K+ efflux, SO4 influx and GSH levels of the human erythrocyte. Blood was collected in heparinized tubes and washed three times. The cells were suspended at 3% hematocrit and incubated for 1 h at 25°C in a medium containing increasing concentrations of lead chloride (0, 0.3, 0.5 and 1 μM). After incubation, the suspensions were centrifuged and the erythrocyte pellets were divided into three aliquots for testing. The results show: an increase in the permeability of erythrocytes treated with lead chloride with consequent damage and cellular death, especially in the presence of high concentrations; an increase in potassium ion efflux; alterations in the morphology and membrane structure of the red blood cells; and a decrease in sulphate uptake, due either to the oxidative effect of this compound on the band 3 protein, which loses its biological valence as a carrier of sulphate ions, or to a decrease in the ATP erythrocyte concentration. In conclusion, the exposure of erythrocytes to Pb2+ ions leads to a reduction in the average lifetime of the erythrocytes and the subsequent development of anemia. These data are discussed in terms of the possible effect of lead on the reduction-oxidation systems of the cell. Oxidant agents, such as lead, are known to cross-link integral membrane proteins, leading to K/Cl-cotransport. The increased K+ efflux affects the altered redox state.

Abbreviations

AE:

anion exchanger

ATP:

adenosine 5′-triphosphate

BaCl2 :

barium chloride

2,3 BPG:

2,3 diphosphoglycerate

Ca2+ :

calcium ion

Cl :

chloride anion

DIDS:

diisothiocyanato-stilbene-2,2′disulphonate

GSH:

reduced glutathione

GSSG:

oxidized glutathione

HCl:

hydrochloric acid

HCO3 :

bicarbonate ion

HEPES:

N-[2-hydroxethyl]piperazione-N′-2[2-ethenesulphonic acid]

K+ :

potassium ion

KCl:

potassium chloride

Na2SO4 :

sodium sulphate

NaCl:

sodium chloride

Pb2+ :

lead ion

PbCl2 :

lead chloride

RBC:

red blood cell

SEM:

scanning electron microscopy

SO4 2- :

sulphate anion

References

  1. Lockitch, G. Perspectives on lead toxicity. Clin. Biochem. 26 (1993) 371–381.

    Article  PubMed  CAS  Google Scholar 

  2. Giuliani, R., Bettoni, F., Leali, D., Morandini, F., Apostoli, P., Grigolato, P., Cesana, B.M. and Aleo, M.F. Focal adhesion molecule as potential target of lead toxicity in NRK-52E cell line. FEBS Lett. 579 (2005) 6251–6258.

    Article  PubMed  CAS  Google Scholar 

  3. Zamzami, N., Maisse, C., Métivier, D. and Kroemer, G. Measurement of membrane permeability and permeability transition of mitochondria. Methods Cell Biol. 165 (2001) 147–158.

    Article  Google Scholar 

  4. Stohs, S.J. and Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18 (1995) 321–336.

    Article  PubMed  CAS  Google Scholar 

  5. Martinou, J.C. and Green, D.R. Breaking the mitochondrial barrier. Nat. Rev. Mol. Cell. Biol. 2 (2001) 63–67.

    Article  PubMed  CAS  Google Scholar 

  6. Simons, T.J. Passive transport and binding of lead by human red blood cells. J. Physiol. 378 (1986) 267–286.

    PubMed  CAS  Google Scholar 

  7. Hamasaki, N. and Okubo, K. Band 3 protein: physiology, function and structure. Cell. Mol. Biol. 42 (1996) 1025–1039.

    PubMed  CAS  Google Scholar 

  8. Casey, J.R. and Kopito, R.R. The role of cysteine residues in the erythrocyte plasma membrane anion exchange protein. J. Biol. Chem. 270 (1995) 8521–8527.

    Article  PubMed  CAS  Google Scholar 

  9. Galtieri, A., Tellone, E., Romano, L., Misiti, F., Bellocco, E., Ficarra, S., Russo, A., Di Rosa, D., Castagnola, M., Giardina, B. and Messana, I. Band 3 protein function in human erythrocytes: effect of oxygenationdeoxigenation. Biochem. Biophys. Acta 1564 (2002) 214–218.

    Article  PubMed  CAS  Google Scholar 

  10. Blackman, S.M., Hustedt, E.J., Cobb, C.E. and Beth, A.H. Flexibility of the cytoplasmic domain of the anion exchange protein, band 3, in human erythrocytes. Biophys. J. 81 (2001) 3363–3376.

    Article  PubMed  CAS  Google Scholar 

  11. Poole, J. Red cell antigens on band 3 and glycophorin A. Blood Rev. 14 (2000) 31–43.

    Article  PubMed  CAS  Google Scholar 

  12. Yannoukakos, D., Vasseur, C., Piau, J.P., Wajcman, H. and Bursaux, E. Phosphorilation sites in human erythrocyte band 3 protein. Biochim. Biophys. Acta 1061 (1991) 253–266.

    Article  PubMed  CAS  Google Scholar 

  13. Barbul, A., Zipser, Y., Nachles, A. and Korenstein, R. Deoxygenation and elevation of intracellular magnesium induce tyrosine phosphorilation of band 3 in human erythrocytes. FEBS Lett. 455 (1999) 87–91.

    Article  PubMed  CAS  Google Scholar 

  14. Romano, L., Scuteri, A., Gugliotta, T., Romano, P., De Luca, G., Sidoti, A. and Amato, A. Sulphate influx in the erythrocytes of normal, diabetic and hypertensive patients. Cell Biol. Int. 26 (2002) 421–426.

    Article  PubMed  CAS  Google Scholar 

  15. De Luca, G., Gugliotta, T., Scuteri, A., Romano, P., Rinaldi, C., Sidoti, A., Amato, A. and Romano, L. The interaction of haemoglobin, magnesium, organic phosphates and the Band 3 protein in nucleated and anucleated erythrocytes. Cell Biochem. Funct. 22 (2004) 179–186.

    Article  PubMed  Google Scholar 

  16. Pastore, A., Federici, G., Bertini, E. and Piemonte, F. Analysis of glutathione. Implication in redox and detoxication. Clin. Chim. Acta 333 (2003) 19–39.

    Article  PubMed  CAS  Google Scholar 

  17. Counter, S.A., Buchanam, L.H., Ortega, F. and Rifai, N. Blood lead and hemoglobin levels in Andean children with chronic lead intoxication. Neurotoxicology 21 (2000) 301–308.

    PubMed  CAS  Google Scholar 

  18. Hernàndez-Serrato, M.I., Mendoza-Alvarado, L.R., Rojas-Martinez, R., Gonzàlez-Garza, C., Hulme, J.M. and Olaiz-Fernàndez, G. Factors associated with lead exposure in Oaxaca, Mexico. J. Expo. Anal. Environ. Epidemiol. 13 (2003) 341–347.

    Article  PubMed  Google Scholar 

  19. Stober, T., Stelte, W. and Kunze, K. Lead concentrations in blood, plasma, erythrocytes, and cerebrospinal fluid in amyotrophic lateral sclerosis. J. Neurol. Sci. 61 (1983) 21–26.

    Article  PubMed  CAS  Google Scholar 

  20. Simons, T.J. Cellular interactions between lead and calcium. Br. Med. Bull. 42 (1986) 431–434.

    PubMed  CAS  Google Scholar 

  21. Roy, S.S., Sen, G. and Biswas, T. Role of sulfhydryl groups in band 3 in the inhibition of phosphate transport across erythrocyte membrane in visceral leishmaniasis. Arch. Biochem. Biophys. 436 (2005) 121–127.

    Article  PubMed  CAS  Google Scholar 

  22. De Luca, G., Gugliotta, T., Parisi, G., Romano, P., Geraci, A., Romano, O., Scuteri, A. and Romano, L. Effects of nickel on human and fish red blood cells. Biosci. Rep. 27 (2007) 265–273.

    Article  PubMed  CAS  Google Scholar 

  23. Teti, D., Crupi, M., Busà, M., Valenti, A., Loddo, S., Mondello, M. and Romano, L. Chemical and pathological oxidative influences on band 3 protein anion-exchanger. Cell Physiol. Biochem. 16 (2005) 77–86.

    Article  PubMed  CAS  Google Scholar 

  24. Huber, S.M., Gamper, N. and Lang, F. Chloride conductance and volumeregulatory non selective cation conductance in human red blood cell ghosts. Pflùgers Arch. 441 (2001) 551–558.

    Article  PubMed  CAS  Google Scholar 

  25. Donaldson, W.E. and Knowles, S.O. Is lead toxicosis a reflection of altered fatty acid composition of membranes? Comp. Biochem. Physiol. 104C (1999) 377–379.

    Google Scholar 

  26. Yücebilgic, G., Bilgin, R., Tamer, L. and Tükel, S. Effects of lead on Na+-K+ATPase and Ca2+ATPase activities and lipid peroxidation in blood of workers. Int. J. Toxicol. 22 (2003) 95–97.

    Article  PubMed  Google Scholar 

  27. Sivaprasad, R., Nagaraj, M. and Varalakshmi, P. Combined efficacies of lipoic acid and meso-2,3-dimercaptosuccinic acid on lead-induced erythrocyte membrane lipid peroxidation and antioxidant status in rats. Hum. Exp. Toxicol. 22 (2003) 182–192.

    Article  Google Scholar 

  28. Mota de Freitas, D., Amari, L., Scrinivason, C., Rong, Q., Romosomy, R., Abraha, A., Geraldes, C.F.G.C. and Boyd, M.K. Competition between Li+ and Mg2+ for the phosphate groups in the human erythrocyte membrane and ATP. An NMR and fluorescence study. Biochemistry 33 (1994) 4101–4110.

    Article  PubMed  CAS  Google Scholar 

  29. Baranowska-Bosiacka, I. and Hlynczak, A.J. The effect of lead ions on the energy metabolism of human erythrocytes in vitro. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 134 (2003) 403–416.

    Article  PubMed  Google Scholar 

  30. Grabowska, M. and Gumińska, M. The effect of lead on lactate formation, ATP level and membrane ATPase activities in human erythrocytes in vitro. Int. J. Occup. Med. Environ. Health 9 (1996) 265–274.

    PubMed  CAS  Google Scholar 

  31. Kempe, D.S., Lang, P.A., Eisele, K., Klarl, B.A., Wieder, T., Huber, S.M., Duranton, C. and Lang, F. Stimulation of eryhrocyte phosphatidylserie exposure by lead ions. Am. J. Physiol. Cell Physiol. 288 (2005) 396–402.

    Article  Google Scholar 

  32. Berg, C.P., Engels, I.H., Rothbart, A., Lauber, K., Renz, A., Schlosser, S.F., Schulze-Osthoff, K. and Wesselborg, S. Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ. 8 (2001) 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  33. Bratosin, D., Estaquier, J., Petit, F., Arnoult, D., Quatannens, B., Tissier, J.P., Slomianny, C., Sartiaux, C., Alonso, C., Huart, J.J., Montreuil, J. and Ameisen, J.C. Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ. 8 (2001) 1143–1156.

    Article  PubMed  CAS  Google Scholar 

  34. Daugas, E., Cande, C. and Kroemer, G. Erythrocytes: death of a mummy. Cell Death Differ. 8 (2001) 1131–1133.

    Article  PubMed  CAS  Google Scholar 

  35. Bortner, C.D. and Cidlowski, J.A. Caspase independent/dependent regulation of K+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J. Biol. Chem. 274 (1999) 21953–21962.

    Article  PubMed  CAS  Google Scholar 

  36. Bortner, C.D., Hughes, F.M. Jr. and Cidlowski, J.A. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem. 272 (1997) 32436–32442.

    Article  PubMed  CAS  Google Scholar 

  37. Fadok, V.A., de Cathelineau, A., Daleke, D.L., Henson, P.M. and Bratton, D.L. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276 (2001) 1071–1077.

    Article  PubMed  CAS  Google Scholar 

  38. Hughes, F.M. Jr. and Cidlowski, J.A. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv. Enzyme Regul. 39 (1999) 157–171.

    Article  PubMed  CAS  Google Scholar 

  39. Hughes, F.M. Jr, Bortner, C.D., Purdy, G.D. and Cidlowski, J.A. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem. 272 (1997) 30567–30576.

    Article  PubMed  CAS  Google Scholar 

  40. Montague, J.W., Bortner, C.D., Hughes, F.M. Jr. and Cidlowski, J.A. A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis. Steroids 64 (1999) 563–569.

    Article  PubMed  CAS  Google Scholar 

  41. Perez, G.I., Maravei, D.V., Trbovich, A.M., Cidlowski, J.A., Tilly, J.L. and Hughes, F.M. Jr. Identification of potassium-dependent and -independent components of the apoptotic machinery in mouse ovarian germ cells and granulosa cells. Biol. Reprod. 63 (2000) 1358–1369.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Romano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gugliotta, T., De Luca, G., Romano, P. et al. Effects of lead chloride on human erythrocyte membranes and on kinetic anion sulphate and glutathione concentrations. Cell Mol Biol Lett 17, 586–597 (2012). https://doi.org/10.2478/s11658-012-0027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0027-2

Key words