Skip to main content
  • Research article
  • Published:

Cloning of the human activated leukocyte cell adhesion molecule promoter and identification of its tissue-independent transcriptional activation by Sp1

Abstract

Activated leukocyte cell adhesion molecule (ALCAM) belongs to the immunoglobulin cell adhesion molecule super family. ALCAM is implicated in tumor progression, inflammation, and the differentiation of hematopoietic stem cells. Hitherto, the identity of regulatory DNA elements and cognate transcription factors responsible for ALCAM gene expression remained unknown. In this report, the human ALCAM promoter was cloned and its transcriptional mechanisms elucidated. The promoter is TATA-less and contains multiple GC-boxes. A proximal 650-bp promoter fragment conferred tissue-independent activation, whereas two contiguous regions upstream of this region negatively influenced promoter activity in a tissue-specific manner. The positive regulatory promoter region was mapped to a core 50 base pair sequence containing a conical Sp1 element. Mutation analysis revealed that this element alone or in tandem with elements immediately upstream was required for maximal promoter activity. Chromatin analysis revealed that Sp1 binds exclusively to the canonical binding sequence in vivo, but not to DNA sequence immediately upstream. Finally, we showed that over-expression of Sp1 significantly increased the basal promoter activity. Thus, Sp1 activated the ALCAM promoter in most cells. These findings have important ramifications for unraveling the roles of ALCAM in inflammation and tumorigenesis.

Abbreviations

ALCAM:

activated leukocyte cell adhesion molecule

CHIP:

chromatin immunoprecipitation

EMSA:

electrophoretic mobility shift assay

PAECs:

pulmon. artery endothelial cells

PMVECs:

pulmon. micro-vascular endothelial cells

pN3Sp1:

plasmid DNA expressing Sp1

Sp1:

specificity protein 1

TBP:

TATA-box binding protein

TFIIB:

transcription factor IIB

TRANSFAC:

TRANScription FACtor database

References

  1. Bowen, M.A., Patel, D.D., Li, X., Modrell, B., Malacko, A.R., Wang, W.C., Marquardt, H., Neubauer, M., Pesando, J.M. and Francke, U. Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J. Exp. Med. 181 (1995) 2213–2220.

    Article  PubMed  CAS  Google Scholar 

  2. Bowen, M.A., Bajorath, J., D’Egidio, M., Whitney, G.S., Palmer, D., Kobarg, J., Starling, G.C., Siadak, A.W and Aruffo, A. Characterization of mouse ALCAM (CD166): the CD6-binding domain is conserved in different homologs and mediates cross-species binding. Eur. J. Immunol. 27 (1997) 1469–1478.

    Article  PubMed  CAS  Google Scholar 

  3. Hassan, N.J., Barclay, A.N and Brown, M.H. Frontline: Optimal T cell activation requires the engagement of CD6 and CD166. Eur. J. Immunol. 34 (2004) 930–940.

    Article  PubMed  CAS  Google Scholar 

  4. Corbel, C., Cormier, F., Pourquie, O. and Bluestein, H.G. BEN, a novel surface molecule of the immunoglobulin superfamily on avian hemopoietic progenitor cells shared with neural cells. Exp. Cell. Res. 203 (1992) 91–99.

    Article  PubMed  CAS  Google Scholar 

  5. Stephan, J.P., Bald, L., Roberts, P.E., Lee, J., Gu, Q. and Mather, J.P. Distribution and function of the adhesion molecule BEN during rat development. Dev. Biol. 212 (1999) 264–277.

    Article  PubMed  CAS  Google Scholar 

  6. Laessing, U., Giordano, S., Stecher, B., Lottspeich, F and Stuermer, C.A. Molecular characterization of fish neurolin: a growth-associated cell surface protein and member of the immunoglobulin superfamily in the fish retinotectal system with similarities to chick protein DM-GRASP/SC-1/BEN. Differentiation 56 (1994) 21–29.

    PubMed  CAS  Google Scholar 

  7. Burns, F.R, von Kannen, S., Guy, L., Raper, J.A., Kamholz, J. and Chang, S. DM-GRASP, a novel immunoglobulin superfamily axonal surface protein that supports neurite extension. Neuron 7 (1991) 209–220.

    Article  PubMed  CAS  Google Scholar 

  8. Cortes, F., Deschaseaux, F., Uchida, N., Labastie, M.C., Friera, A.M., He, D., Charbord, P. and Peault, B. HCA, an immunoglobulin-like adhesion molecule present on the earliest human hematopoietic precursor cells, is also expressed by stromal cells in blood-forming tissues. Blood 93 (1999) 826–837.

    PubMed  CAS  Google Scholar 

  9. Uchida, N., Yang, Z., Combs, J., Pourquie, O., Nguyen, M., Ramanathan, R., Fu, J., Welply, A., Chen, S. and Weddell, G. The characterization, molecular cloning, and expression of a novel hematopoietic cell antigen from CD34+ human bone marrow cells. Blood 89 (1997) 2706–2716.

    PubMed  CAS  Google Scholar 

  10. Degen, W.G,, van Kempen, L.C., Gijzen, E.G., van Groningen, J.J., van Kooyk, Y., Bloemers, H.P. and Swart, G.W. MEMD, a new cell adhesion molecule in metastasizing human melanoma cell lines, is identical to ALCAM (activated leukocyte cell adhesion molecule). Am. J. Pathol. 152 (1998) 805–813.

    PubMed  CAS  Google Scholar 

  11. Matsumoto, A., Mitchell, A., Kurata, H., Pyle, L., Kondo, K., Itakura, H. and Fidge, N. Cloning and characterization of HB2, a candidate high density lipoprotein receptor. Sequence homology with members of the immunoglobulin superfamily of membrane proteins. J. Biol. Chem. 272 (1997) 16778–16782.

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka, H., Matsui, T., Agata, A., Tomura, M., Kubota, I., McFarland, K.C., Kohr, B., Lee, A., Phillips, H.S. and Shelton, D.L. Molecular cloning and expression of a novel adhesion molecule, SC1. Neuron 7 (1991) 535–545.

    Article  PubMed  CAS  Google Scholar 

  13. Swart, G.W. Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur. J. Cell. Biol. 81 (2002) 313–321.

    Article  PubMed  CAS  Google Scholar 

  14. Fujiwara, H., Tatsumi, K., Kosaka, K., Sato, Y., Higuchi, T., Yoshioka, S., Maeda, M., Ueda, M. and Fujii, S. Human blastocysts and endometrial epithelial cells express activated leukocyte cell adhesion molecule (ALCAM/CD166). J. Clin. Endocrinol. Metab. 88 (2003) 3437–3443.

    Article  PubMed  CAS  Google Scholar 

  15. Masedunskas, A., King, J.A., Tan, F., Cochran, R., Stevens, T., Sviridov, D. and Ofori-Acquah, S.F. Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration. FEBS Lett. 580 (2006) 2637–2645.

    Article  PubMed  CAS  Google Scholar 

  16. Ibanez, A., Sarrias, M.R., Farnos, M., Gimferrer, I., Serra-Pages, C., Vives, J. and Lozano, F. Mitogen-Activated Protein Kinase Pathway Activation by the CD6 Lymphocyte Surface Receptor. J. Immunol. 177 (2006) 1152–1159.

    PubMed  CAS  Google Scholar 

  17. Gimferrer, I., Calvo, M., Mittelbrunn, M., Farnos, M., Sarrias, M.R., Enrich, C., Vives, J., Sanchez-Madrid, F. and Lozano, F. Relevance of CD6-mediated interactions in T cell activation and proliferation. J. Immunol. 173 (2004) 2262–2270.

    PubMed  CAS  Google Scholar 

  18. Zimmerman, A.W., Joosten, B., Torensma, R., Parnes, J.R., van Leeuwen, F.N. and Figdor, C.G. Long-term engagement of CD6 and ALCAM is essential for T cell proliferation induced by dendritic cells. Blood 107 (2006) 3212–3220.

    Article  PubMed  CAS  Google Scholar 

  19. van Kempen, L.C., van den Oord, J.J., van Muijen, G.N., Weidle, U.H., Bloemers, H.P. and Swart, G.W. Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. Am. J. Pathol. 156 (2000) 769–774.

    Article  PubMed  Google Scholar 

  20. Zheng, X., Ding, W., Xie, L. and Chen, Z. [Expression and significance of activated leukocyte cell adhesion molecule in prostatic intraepithelial neoplasia and adenocarcinoma]. Zhonghua. Nan. Ke. Xue. 10 (2004) 265–268.

    PubMed  CAS  Google Scholar 

  21. Kristiansen, G., Pilarsky, C., Wissmann, C., Stephan, C., Weissbach, L., Loy, V., Loening, S., Dietel, M. and Rosenthal, A. ALCAM/CD166 is upregulated in low-grade prostate cancer and progressively lost in high-grade lesions. Prostate 54 (2003) 34–43.

    Article  PubMed  Google Scholar 

  22. Verma, A., Shukla, N.K., Deo, S.V., Gupta, S.D. and Ralhan, R. MEMD/ALCAM: a potential marker for tumor invasion and nodal metastasis in esophageal squamous cell carcinoma. Oncology 68 (2005) 462–470.

    Article  PubMed  CAS  Google Scholar 

  23. Weichert, W., Knosel, T., Bellach, J., Dietel, M. and Kristiansen, G. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J. Clin. Pathol. 57 (2004) 1160–1164.

    Article  PubMed  CAS  Google Scholar 

  24. Kahlert, C., Weber, H., Mogler, C., Bergmann, F., Schirmacher, P., Kenngott, H.G., Matterne, U., Mollberg, N., Rahbari, N.N, and Hinz, U. Increased expression of ALCAM/CD166 in pancreatic cancer is an independent prognostic marker for poor survival and early tumour relapse. Br. J. Cancer 101 (2009) 457–464.

    Article  PubMed  CAS  Google Scholar 

  25. King, J.A, Ofori-Acquah, S.F, Stevens, T., Al-Mehdi, A.B, Fodstad, O. and Jiang, W.G. Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator. Breast. Cancer Res. 6 (2004) 478–487.

    Article  Google Scholar 

  26. Jezierska, A., Olszewski, W.P., Pietruszkiewicz, J., Olszewski, W., Matysiak, W. and Motyl, T. Activated Leukocyte Cell Adhesion Molecule (ALCAM) is associated with suppression of breast cancer cells invasion. Med. Sci. Monit. 12 (2006) 245–256.

    Google Scholar 

  27. Burkhardt, M., Mayordomo, E., Winzer, K.J., Fritzsche, F., Gansukh, T., Pahl, S., Weichert, W., Denkert, C., Guski, H. and Dietel, M. Cytoplasmic overexpression of ALCAM is prognostic of disease progression in breast cancer. J. Clin. Pathol. 59 (2006) 403–409.

    Article  PubMed  CAS  Google Scholar 

  28. Ihnen, M., Muller, V., Wirtz, R.M., Schroder, C., Krenkel, S., Witzel, I., Lisboa, B.W., Janicke, F. and Milde-Langosch, K. Predictive impact of activated leukocyte cell adhesion molecule (ALCAM/CD166) in breast cancer. Breast. Cancer Res. Treat. 112 (2008) 419–427.

    Article  PubMed  CAS  Google Scholar 

  29. Davies, S.R., Dent, C., Watkins, G., King, J.A., Mokbel, K. and Jiang, W.G. Expression of the cell to cell adhesion molecule, ALCAM, in breast cancer patients and the potential link with skeletal metastasis. Oncol. Rep. 19 (2008) 555–561.

    PubMed  Google Scholar 

  30. Kilic, E., Milde-Langosch, K., Muller, V., Wirtz, R. and Ihnen, M. [Expression of activated leukocyte cell adhesion molecule in breast cancer. Predictability of the response to taxane-free chemotherapy]. Der. Pathologe. 29 (2008) Suppl 2, 347–352.

    Article  PubMed  Google Scholar 

  31. Ihnen, M., Wirtz, R.M., Kalogeras, K.T., Milde-Langosch, K., Schmidt, M., Witzel, I., Eleftheraki, A.G., Papadimitriou, C., Janicke, F. and Briassoulis, E. Combination of osteopontin and activated leukocyte cell adhesion molecule as potent prognostic discriminators in HER2- and ER-negative breast cancer. Br. J. Cancer 103 (2010) 1048–1056.

    Article  PubMed  CAS  Google Scholar 

  32. Hanahan, D. and Weinberg, R.A. The hallmarks of cancer. Cell 100 (2000) 57–70.

    Article  PubMed  CAS  Google Scholar 

  33. Ofori-Acquah, S.F. and King, J.A. Activated leukocyte cell adhesion molecule: a new paradox in cancer. Transl. Res. 151 (2008) 122–128.

    Article  PubMed  CAS  Google Scholar 

  34. Orkin, S.H. GATA-binding transcription factors in hematopoietic cells. Blood 80 (1992) 575–581.

    PubMed  CAS  Google Scholar 

  35. King, J.A., Tan, F., Mbeunkui, F., Chambers, Z., Cantrell, S., Chen, H., Alvarez, D., Shevde, L.A. and Ofori-Acquah, S.F. Mechanisms of transcriptional regulation and prognostic significance of activated leukocyte cell adhesion molecule in cancer. Mol. Cancer 9 (2010) 266.

    Article  PubMed  Google Scholar 

  36. Tan, F., Ghosh, S., Mbeunkui, F., Thomas, R., Weiner, J.A. and Ofori-Acquah, S.F. Essential role for ALCAM gene silencing in megakaryocytic differentiation of K562 cells. BMC Mol. Biol. 11 (2010) 91.

    Article  PubMed  CAS  Google Scholar 

  37. Li, Q., Clegg, C., Peterson, K., Shaw, S., Raich, N. and Stamatoyannopoulos, G. Binary transgenic mouse model for studying the trans control of globin gene switching: evidence that GATA-1 is an in vivo repressor of human epsilon gene expression. Proc. Natl. Acad. Sci. U. S. A. 94 (1997) 2444–2448.

    Article  PubMed  CAS  Google Scholar 

  38. Hong, W., Nakazawa, M., Chen, Y.Y., Kori, R., Vakoc, C.R., Rakowski, C. and Blobel, G.A. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J. 24 (2005) 2367–2378.

    Article  PubMed  CAS  Google Scholar 

  39. Al-Mehdi, A.B., Tozawa, K., Fisher, A.B., Shientag, L., Lee, A. and Muschel, R.J. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat. Med. 6 (2006) 100–102.

    Google Scholar 

  40. Wong, C.W., Song, C., Grimes, M.M., Fu, W., Dewhirst, M.W., Muschel, R.J. and Al-Mehdi, A.B. Intravascular location of breast cancer cells after spontaneous metastasis to the lung. Am. J. Pathol. 161 (2002) 749–753.

    Article  PubMed  Google Scholar 

  41. Block, K.L., Shou, Y. and Poncz, M. An Ets/Sp1 interaction in the 5′-flanking region of the megakaryocyte-specific alpha IIb gene appears to stabilize Sp1 binding and is essential for expression of this TATA-less gene. Blood 88 (1996) 2071–2080.

    PubMed  CAS  Google Scholar 

  42. Liu, M.Y., Eyries, M., Zhang, C., Santiago, F.S. and Khachigian, L.M. Inducible platelet-derived growth factor D-chain expression by angiotensin II and hydrogen peroxide involves transcriptional regulation by Ets-1 and Sp1. Blood 107 (2006) 2322–2329.

    Article  PubMed  CAS  Google Scholar 

  43. Sugimoto, H., Okamura, K., Sugimoto, S., Satou, M., Hattori, T., Vance, D.E. and Izumi, T. Sp1 is a co-activator with Ets-1, and Net is an important repressor of the transcription of CTP:phosphocholine cytidylyltransferase alpha. J. Biol. Chem. 280 (2005) 40857–40866.

    Article  PubMed  CAS  Google Scholar 

  44. Le Mee, S., Fromigue, O. and Marie, P.J. Sp1/Sp3 and the myeloid zinc finger gene MZF1 regulate the human N-cadherin promoter in osteoblasts. Exp. Cell Res. 302 (2005) 129–142.

    Article  PubMed  Google Scholar 

  45. Liu, M., Whetstine, J.R., Payton, S.G., Ge, Y., Flatley, R.M. and Matherly, L.H. Roles of USF, Ikaros and Sp proteins in the transcriptional regulation of the human reduced folate carrier B promoter. Biochem. J. 383 (2004) 249–257.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon F. Ofori-Acquah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, F., Mbunkui, F. & Ofori-Acquah, S.F. Cloning of the human activated leukocyte cell adhesion molecule promoter and identification of its tissue-independent transcriptional activation by Sp1. Cell Mol Biol Lett 17, 571–585 (2012). https://doi.org/10.2478/s11658-012-0028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0028-1

Key words