Skip to main content
  • Short communication
  • Published:

The influence of 8-prenylnaringenin on the activity of voltage-gated kv1.3 potassium channels in human jurkat t cells

Abstract

Using the whole-cell patch-clamp technique, we investigated the influence of 8-prenylnaringenin on the activity of the voltage-gated Kv1.3 potassium channels in the human leukemic T lymphocyte cell line Jurkat. 8-prenylnaringenin is a potent plant-derived phytoestrogen that has been found to inhibit cancer cell proliferation. The results show that it inhibited the Kv1.3 channels in a concentration-dependent manner. Complete inhibition occurred at concentrations higher than 10 μM. The inhibitory effect of 8-prenylnaringenin was reversible. It was accompanied by a significant acceleration of channel inactivation without any pronounced change in the activation rate. Of the naringenin derivatives tested to date, 8-prenylnaringenin is the most potent inhibitor of the Kv1.3 channels. The potency of the inhibition may be due to the presence of a prenyl group in the molecule of this flavonoid. The inhibition of the Kv1.3 channels might be involved in the antiproliferative and pro-apoptotic effects of 8-prenylnaringenin that have been observed in cancer cell lines expressing these channels.

Abbreviations

Iprel :

relative peak current

Kv:

voltage-gated potassium channels

Tmax :

time needed for the recorded currents to reach their maximal value

References

  1. Stevens, J.F., Taylor, A.W. and Deinzer M.L. Quantitative analysis of xanthohumol and related flavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J. Chromatogr. 832 (1999) 97–107.

    Article  CAS  Google Scholar 

  2. Stevens, J.F. and Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65 (2004) 1317–1330.

    Article  PubMed  CAS  Google Scholar 

  3. Milligan, S., Kalita, J., Pocock, V., Heyerick, A., De Cooman, L., Rong, H. and De Keukeleire, D. Oestrogenic activity of the hop phyto-oestrogen, 8-prenylnaringenin. Reproduction 123 (2002) 235–242.

    Article  PubMed  CAS  Google Scholar 

  4. Sehmisch, S., Hammer, F., Christoffel, J., Seidlova-Wuttke, D., Tezval, M., Wuttke, W., Stuermer, K.M. and Stuermer, E.K. Comparison of the phytohormones genistein, resveratrol and 8-prenylnaringenin as agents for preventing osteoporosis. Planta Med. 74 (2008) 794–801.

    Article  PubMed  CAS  Google Scholar 

  5. Roelens, F., Heldring, N., Dhooge, W., Bengtsson, M., Comhaire, F., Gustafsson, J.A., Treuter, E. and De Keukeleire, D. Subtle side-chain modifications of the hop phytoestrogen 8-prenylnaringenin result in distinct agonist/antagonist activity profiles for estrogen receptors alpha and beta. J. Med. Chem. 49 (2006) 7357–7365.

    Article  PubMed  CAS  Google Scholar 

  6. Paoletti, T., Fallarini, S., Gugliesi, F., Minassi, A., Appendino, G. and Lombardi, G. Anti-inflammatory and vascularprotective properties of 8-prenylapigenin. Eur. J. Pharmacol. 620 (2009) 120–130.

    Article  PubMed  CAS  Google Scholar 

  7. Negrão, R., Costa, R., Duarte, D., Taveira Gomes, T., Mendanha, M., Moura, L., Vasques, L., Azevedo, I. and Soares, R. Angiogenesis and inflammation signaling are targets of beer polyphenols on vascular cells. J. Cell. Biochem. 111 (2010) 1270–1279.

    Article  PubMed  Google Scholar 

  8. Wesołowska, O., Wiśniewski, J., Sroda, K., Krawczenko, A., Bielawska-Pohl, A., Paprocka, M., Duś, D. and Michalak, K. 8-prenylnaringenin is an inhibitor of multidrug resistance-associated transporters, P-glycoprotein and MRP1. Eur. J. Pharmacol. 644 (2010) 32–40.

    Article  PubMed  Google Scholar 

  9. Brunelli, E., Pinton, G., Chianale, F., Graziani, A., Appendino, G. and Moro, L. 8-Prenylnaringenin inhibits epidermal growth factor-induced MCF-7 breast cancer cell proliferation by targeting phosphatidylinositol-3-OH kinase activity. J. Steroid Biochem. Mol. Biol. 113 (2009) 163–170.

    Article  PubMed  CAS  Google Scholar 

  10. Delmulle, L., Bellahcène, A., Dhooge, W., Comhaire, F., Roelens, F., Huvaere, K., Heyerick, A., Castronovo, V. and De Keukeleire, D. Antiproliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines. Phytomedicine 13 (2006) 732–734.

    Article  PubMed  CAS  Google Scholar 

  11. Brunelli, E., Minassi, A., Appendino, G. and Moro, L. 8-Prenylnaringenin, inhibits estrogen receptor-alpha mediated cell growth and induces apoptosis in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 107 (2007) 140–148.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflügers Arch. 448 (2004) 274–286.

    Article  PubMed  CAS  Google Scholar 

  13. Felipe, A., Vincente, R., Villalonga, N., Roura-Ferrer, M., Martinez-Marmol, R., Sole, L., Ferreres, J.C. and Condom, E. Potassium chanels: new targets in cancer therapy. Cancer Detec. Prev. 30 (2006) 375–385.

    Article  PubMed  CAS  Google Scholar 

  14. Matteson, D. and Deutsch, C. K+ channels in T lymphocytes: a patch-clamp study using monoclonal antibody adhesion. Nature 307 (1984) 71.

    Article  Google Scholar 

  15. Cahalan, M., Chandy, K., DeCoursey, T. and Gupta, S. A voltage-gated potassium channel in human T lymphocytes. J. Physiol. 358 (1985) 197–237.

    PubMed  CAS  Google Scholar 

  16. Gutman, G., Chandy, K.G., Grissmer, S., Lazdunski, M., McKinnon, D., Pardo, L., Robertson, G.A., Rudy, B., Sanguinetti, M.C., Stühmer, W. and Wang, X. International Union of Pharmacology. LIII. Nomenclature and Molecular Relationships of Voltage-gated Potassium channels. Pharmacol. Rev. 67 (2005) 473–508.

    Article  Google Scholar 

  17. Cahalan, M. and Chandy, K. The functional network of ion channels in T lymphocytes. Immunol. Rev. 231 (2009) 59–87.

    Article  PubMed  CAS  Google Scholar 

  18. Gulbins, E., Sassi, N., Grassme, H., Zoratti, M. and Szabo, I. Role of Kv1.3 mitochondrial potassium channels in apoptotic signalling in lymphocytes. Biochim. Biophys. Acta (Bioenergetics) 1797 (2010) 1251–1259.

    Article  CAS  Google Scholar 

  19. Bielanska, J., Hernandez-Losa, J., Perez-Verdaguer, M., Moline, T., Somoza, R., Ramon y Cajal, S., Condom, E., Ferreres, J. and Felipe, A. Voltage-dependent potassium channels Kv1.3 and Kv1.5 in human cancer. Curr. Cancer Drug Targets 9 (2009) 904–914.

    Article  PubMed  CAS  Google Scholar 

  20. Jang, S., Kang, K., Ryu, P. and Lee, S. Kv1.3 voltage-gated K+ channel subunit as a potential diagnostic marker and therapeutic target for breast cancer. BMB Reports 42 (2009) 535–539.

    Article  PubMed  CAS  Google Scholar 

  21. Jang, S., Choi, S., Ryu, P. and Lee, S. Anti-proliferative effect of Kv1.3 channel blockers in A549 human lung adenocarcinoma in vitro and in vivo. Eur. J. Pharmacol. 651 (2011) 26–32.

    Article  PubMed  CAS  Google Scholar 

  22. Teisseyre, A. and Michalak, K. Genistein inhibits the activity of Kv1.3 potassium channels in human T lymphocytes. J. Membr. Biol. 205 (2005) 71–79.

    Article  PubMed  CAS  Google Scholar 

  23. Teisseyre, A. and Michalak, K. Inhibition of the activity of human lymphocyte Kv1.3 potassium channels by resveratrol. J. Membr. Biol. 214 (2006) 123–129.

    Article  PubMed  CAS  Google Scholar 

  24. Attali, B., Romey, G., Honore, E., Schmid-Alliana, A., Mattei, M., Lesage, F., Ricard, P., Barhanin, J. and Lazdunski, M. Clonning, functional expression, and regulation of two K+ channels in human T lymphocytes. J. Biol. Chem. 267 (1992) 8650–8657.

    PubMed  CAS  Google Scholar 

  25. Valencia-Cruz, G., Shabala, L., Delgado-Enciso, I., Shabala, S., Bonales-Alatorre, E., Pottosin, I.I. and Dobrovinskaya O.R. Kbg and Kv1.3 channels mediate potassium efflux in the early phase of apoptosis in Jurkat T lymphocytes. Am. J. Physiol. Cell Physiol. 297 (2009) 1544–1553.

    Article  Google Scholar 

  26. Grissmer, S., Nguyen, A. and Cahalan, M. Calcium-activated potassium channels in resting and activated human T lymphocytes. J. Gen. Physiol. 102 (1993) 601-630.

    Article  PubMed  CAS  Google Scholar 

  27. Grissmer, S., Lewis, R.S. and Cahalan, M.D. Ca2+-activated K+ channels in human leukemic T cells. J. Gen. Physiol. 99 (1992) 63-84.

    Article  PubMed  CAS  Google Scholar 

  28. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F.J. Improved patch-clamp techniques for high- resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 39 (1981) 85-100.

    Google Scholar 

  29. Teisseyre, A. and Mozrzymas, J.W. Inhibition of the activity of T lymphocyte Kv1.3 channels by extracellular zinc. Biochem. Pharmacol. 64 (2002) 595-607.

    Article  PubMed  CAS  Google Scholar 

  30. Teisseyre, A., Duarte, N., Ferreira, M-J. and Michalak, K. Influence of the multidrug transporter inhibitors on the activity of Kv1.3 voltage-gated potassium channels. J. Physiol. Pharmacol. 60 (2009) 69-76.

    PubMed  CAS  Google Scholar 

  31. Szabo, I., Bock, J., Grassme, H., Soddemann, M., Wilker, B., Lang, F., Zoratti, M. and Gulbins, E. Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proc. Natl. Acad. Sci. USA 105 (2008) 14861-14866.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Teisseyre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gąsiorowska, J., Teisseyre, A., Uryga, A. et al. The influence of 8-prenylnaringenin on the activity of voltage-gated kv1.3 potassium channels in human jurkat t cells. Cell Mol Biol Lett 17, 559–570 (2012). https://doi.org/10.2478/s11658-012-0029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0029-0

Key words