Skip to main content
  • Research Article
  • Published:

Evaluation of melanogenesis in A-375 melanoma cells treated with 5,7-dimethoxycoumarin and valproic acid

Abstract

Malignant melanoma (melanoma malignum) is one of the most dangerous types of tumor. It is very difficult to cure. In recent years, a lot of attention has been given to chemoprevention. This method uses natural and synthetic compounds to interfere with and inhibit the process of carcinogenesis. In this study, a new treatment strategy was proposed consisting of a combination of 5,7-dimethoxycoumarin (DMC), an activator of melanogenesis, and valproic acid (VPA), a well-known drug that is one of the histone deacetylase inhibitors (HDACis). In conjunction with 1 mM VPA, all of the tested concentrations of DMC (10–150 μM) significantly decreased the proliferation of A-375 cells. VPA and DMC also induced the synthesis of melanin and the formation of dendrite and star-shaped cells. Tyrosinase gene expression and tyrosinase activity significantly increased in response to VPA treatment. Pyrolysis with gas chromatography and mass spectrometry (Py-GC/MS) was used to investigate the structure of the isolated melanin. This showed that the quantitative and qualitative components of melanin degradation products are dependent on the type of applied melanogenesis inductor. Products derived from eumelanin were detected in the pyrolytic profile of melanin isolated from A-375 cells stimulated with DMC. Thermal degradation of melanin isolated from melanoma cells after exposure to VPA or a mixture of VPA and DMC revealed the additional presence of products derived from pheomelanin.

Abbreviations

BCL2:

B cell lymphoma 2

BCL-X:

B cell lymphoma-X

DMC:

5,7-dimethoxycoumarin

DMSO:

dimethyl sulfoxide

DOPA:

3,4-dihydroxyphenylalanine

HDACIs:

histone deacetylase inhibitors

PCR:

polymerase chain reaction

Py-GC/MS:

pyrolysis-gas chromatography/mass spectrometry

ROS:

reactive oxygen species

SDS:

sodium dodecyl sulfate

TNF:

tumor necrosis factor

VPA:

valproic acid

References

  1. Bhatia, S., Tykodi, S.S. and Thompson, J.A. Treatment of metastatic melanoma: an overview. Oncology 23 (2009) 488–496.

    PubMed  Google Scholar 

  2. Davies, M.A., Fox, P.S., Papadopoulos, N.E., Bedikian, A.Y., Hwu, W.J., Lazar, A.J., Prieto, V.G., Culotta, K.S., Madden, T.L., Xu, Q., Huang, S., Deng, W., Ng, C.S., Gupta, S., Liu, W., Dancey, J.E., Wright, J.J., Bassett, R.L., Hwu, P. and Kim, K.B. Phase I study of the combination of sorafenib and temsirolimus in patients with metastatic melanoma. Clin. Cancer Res. 18 (2012) 1120–1128.

    Article  PubMed  CAS  Google Scholar 

  3. Hoshimoto, S., Faries, M.B., Morton, D.L., Shingai, T., Kuo, C., Wang, H.J., Elashoff, R., Mozzillo, N., Kelley, M.C., Thompson, J.F., Lee, J.E. and Hoon, D.S. Assessment of prognostic circulating tumor cells in a phase III trial of adjuvant immunotherapy after complete resection of stage IV melanoma. Ann. Surg. 255 (2012) 357–362.

    Article  PubMed  Google Scholar 

  4. Hamid, O., Schmidt, H., Nissan, A., Ridolfi, L., Aamdal, S., Hansson, J., Guida, M., Hyams, D.M., Gómez, H., Bastholt, L., Chasalow, S.D. and Berman, D. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J. Transl. Med. 9 (2011) 204.

    Article  PubMed  CAS  Google Scholar 

  5. Chodurek, E., Orchel, A., Gawlik, N., Kulczycka, A., Gruchlik, A. and Dzierzewicz, Z. Proliferation and cellular death of A375 cell line in the presence of HDACs inhibitors. Acta Pol. Pharm. 67 (2010) 686–689.

    PubMed  CAS  Google Scholar 

  6. Howell, P.M.Jr., Liu, S., Ren, S., Behlen, C., Fodstad, O. and Riker, A.I. Epigenetics in human melanoma. Cancer Control 16 (2009) 200–218.

    PubMed  Google Scholar 

  7. Duenas-Gonzalez, A., Candelaria, M., Perez-Plascencia, C., Perez-Cardenas, E., de la Cruz-Hernandez, E. and Herrera, L.A. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat. Rev. 34 (2008) 206–222.

    Article  PubMed  CAS  Google Scholar 

  8. Bolden, J.E., Peart, M.J. and Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 5 (2006) 769–784.

    Article  PubMed  CAS  Google Scholar 

  9. Federico, M. and Bagella, L. Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J. Biomed. Biotechnol. 2011 (2011) doi:10.1155/2011/475641.

  10. Chen, S. and Sang, N. Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J. Biomed. Biotechnol. 2011 (2011) doi:10.1155/2011/197946.

  11. Rocca, A., Minucci, S., Tosti, G., Croci, D., Contegno, F., Ballarini, M., Nolè, F., Munzone, E., Salmaggi, A., Goldhirsch, A., Pelicci, P.G. and Testori, A. A phase I–II study of the histone deacetylase inhibitor valproic acid plus chemoimmunotherapy in patients with advanced melanoma. Br. J. Cancer 100 (2009) 28–36.

    Article  PubMed  CAS  Google Scholar 

  12. Boyle, G.M., Martyn, A.C. and Parsons, P.G. Histone deacetylase inhibitors and malignant melanoma. Pigment Cell Res. 18 (2005) 160–166.

    Article  PubMed  CAS  Google Scholar 

  13. Finn, G.J., Creaven, B.S. and Egan, D.A. Activation of mitogen activated protein kinase pathways and melanogenesis by novel nitro-derivatives of 7-hydroxycomarin in human malignant melanoma cells. Eur. J. Pharm. Sci. 26 (2005) 16–25.

    Article  PubMed  CAS  Google Scholar 

  14. Yang, J.Y., Koo, J.H., Song, Y.G., Kwon, K.B., Lee, J.H., Sohn, H.S., Park, B.H., Jhee, E.C. and Park, J.W. Stimulation of melanogenesis by scoparone in B16 melanoma cells. Acta Pharmacol. Sin. 27 (2006) 1467–1473.

    Article  PubMed  CAS  Google Scholar 

  15. Lopez-Gonzalez, J.S., Prado-Garcia, H., Aguilar-Cazares, D., Molina-Guarneros, J.A., Morales-Fuentes, J. and Mandoki, J.J. Apoptosis and cell cycle disturbances induced by coumarin and 7-hydroxycoumarin on human lung carcinoma cell lines. Lung Cancer 43 (2004) 275–283.

    Article  PubMed  Google Scholar 

  16. Lacy, A. and O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des. 10 (2004) 3797–3811.

    Article  PubMed  CAS  Google Scholar 

  17. Evaluation of carcinogenic risks to humans: some industrial chemicals. IARC Monogr. Eval. Carcinog. Risks Hum. 77 (2000) 193–227.

  18. Kadhum, A.A., Al-Amiery, A.A., Musa, A.Y. and Mohamad, A.B. The antioxidant activity of new coumarin derivatives. Int. J. Mol. Sci. 12 (2011) 5747–5761.

    Article  PubMed  CAS  Google Scholar 

  19. Borgatti, M., Mancini, I., Bianchi, N., Guerrini, A., Lampronti, I., Rossi, D., Sacchetti, G. and Gambari, R. Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines. BMC Biochem. 12 (2011) 15.

    Article  PubMed  CAS  Google Scholar 

  20. Sibbing, D., von Beckerath, N., Morath, T., Stegherr, J., Mehilli, J., Sarafoff, N., Braun, S., Schulz, S., Schömig, A. and Kastrati, A. Oral anticoagulation with coumarin derivatives and antiplatelet effects of clopidogrel. Eur. Heart J. 31 (2010) 1205–1211.

    Article  PubMed  CAS  Google Scholar 

  21. Alesiani, D., Cicconi, R., Mattei, M., Montesano, C., Bei, R. and Canini, A. Cell cycle arrest and differentiation induction by 5,7-dimethoxycoumarin in melanoma cell lines. Int. J. Oncol. 32 (2008) 425–434.

    PubMed  CAS  Google Scholar 

  22. Alesiani, D., Cicconi, R., Mattei, M., Bei, R. and Canini, A. Inhibition of Mek 1/2 kinase activity and stimulation of melanogenesis by 5,7-dimethoxycoumarin treatment of melanoma cells. Int. J. Oncol. 34 (2009) 1727–1735.

    PubMed  CAS  Google Scholar 

  23. Yamaguchi, Y. and Hearing, V.J. Physiological factors that regulate skin pigmentation. Biofactors 35 (2009) 193–199.

    Article  PubMed  CAS  Google Scholar 

  24. Ito, S. and Wakamatsu, K. Chemistry of mixed melanogenesis—pivotal roles of dopaquinone. Photochem. Photobiol. 84 (2008) 582–592.

    Article  PubMed  CAS  Google Scholar 

  25. Giblin, A.V. and Thomas, J.M. Incidence, mortality and survival in cutaneous melanoma. J. Plast. Reconstr. Aesthet. Surg. 60 (2007) 32–40.

    Article  PubMed  Google Scholar 

  26. Panich, U., Onkoksoong, T., Limsaengurai, S., Akarasereenont, P. and Wongkajornsilp, A.J. UVA-induced melanogenesis and modulation of glutathione redox system in different melanoma cell lines: the protective effect of gallic acid. Photochem. Photobiol. B 108 (2012) 16–22.

    Article  CAS  Google Scholar 

  27. Brenner, M. and Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 84 (2008) 539–549.

    Article  PubMed  CAS  Google Scholar 

  28. Harpio, R. and Einarsson, R. S100 proteins as cancer biomarkers with focus on S100B in malignant melanoma. Clin. Biochem. 37 (2004) 512–518.

    Article  PubMed  CAS  Google Scholar 

  29. Goto, H., Usui, M., Wakamatsu, K. and Ito, S. 5-S-cysteinyldopa as diagnostic tumor marker for uveal malignant melanoma. Jpn. J. Ophthalmol. 45 (2001) 538–542.

    Article  PubMed  CAS  Google Scholar 

  30. Salopek, T.G., Yamada, K., Ito, S. and Jimbow, K. Dysplastic melanocytic nevi contain high levels of pheomelanin: quantitative comparison of pheomelanin/eumelanin levels between normal skin, common nevi, and dysplastic nevi. Pigment Cell Res. 4 (1991) 172–179.

    Article  PubMed  CAS  Google Scholar 

  31. Nezirević Dernroth, D., Rundström, A. and Kågedal, B.J. Gas chromatography-mass spectrometry analysis of pheomelanin degradation products. Chromatogr. A 1216 (2009) 5730–5739.

    Article  Google Scholar 

  32. Laughlin, K.M., Luo, D., Liu, C., Shaw, G., Warrington, K.H. Jr., Law, B.K. and Harrison, J.K. Hematopoietic- and neurologic-expressed sequence 1 (Hn1) depletion in B16.F10 melanoma cells promotes a differentiated phenotype that includes increased melanogenesis and cell cycle arrest. Differentiation 78 (2009) 35–44.

    Article  PubMed  CAS  Google Scholar 

  33. Bellei, B., Flori, E., Izzo, E., Maresca, V. and Picardo, M. GSK3beta inhibition promotes melanogenesis in mouse B16 melanoma cells and normal human melanocytes. Cell Signal. 20 (2008) 1750–1761.

    Article  PubMed  CAS  Google Scholar 

  34. Skandrani, I., Pinon, A., Simon, A., Ghedira, K. and Chekir-Ghedira, L. Chloroform extract from Moricandia arvensis inhibits growth of B16-F0 melanoma cells and promotes differentiation in vitro. Cell Prolif. 43 (2010) 471–479.

    Article  PubMed  CAS  Google Scholar 

  35. Leszczyniecka, M., Roberts, T., Dent, P., Grant, S. and Fisher P.B. Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol. Ther. 90 (2001) 105–156.

    Article  PubMed  CAS  Google Scholar 

  36. Chodurek, E., Kuśmierz, D., Dzierzega-Lecznar, A., Kurkiewicz, S., Stepień, K. and Dzierzewicz, Z. Thermochemolysis as the useful method to assess the purity of melanin isolated from the human melanoma malignum. Acta Pol. Pharm. 65 (2008) 731–734.

    PubMed  CAS  Google Scholar 

  37. Slominski, A., Jastreboff, P. and Pawelek, J. L-tyrosine stimulates induction of tyrosinase activity by MSH and reduces cooperative interactions between MSH receptors in hamster melanoma cells. Biosci. Rep. 9 (1989) 579–586.

    Article  PubMed  CAS  Google Scholar 

  38. Lima-Couy, I., Cervero, A., Bonilla-Musoles, F., Pellicer, A. and Simón, C. Endometrial leptin and leptin receptor expression in women with severe/moderate endometriosis. Mol. Hum. Reprod. 10 (2004) 777–782.

    Article  PubMed  CAS  Google Scholar 

  39. Pfaffl, M.W., Horgan, G.W. and Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30 (2002) 36.

    Article  Google Scholar 

  40. Sigalotti, L., Covre, A., Fratta, E., Parisi, G., Colizzi, F., Rizzo, A., Danielli, R., Nicolay, H.J., Coral, S. and Maio, M. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies. J. Transl. Med. 8 (2010) 2–22.

    Article  Google Scholar 

  41. Cunneen, T.S., Conway, R.M. and Madigan, M.C. In vitro effects of histone deacetylase inhibitors and mitomycin C on tenon capsule fibroblasts and conjunctival melanoma cells. Arch. Ophthalmol. 127 (2009) 414–420.

    Article  PubMed  CAS  Google Scholar 

  42. Daud, A.I., Dawson, J., DeConti, R.C., Bicaku, E., Marchion, D., Bastien, S., Hausheer, F.A., Lush, R., Neuger, A., Sullivan, D.M. and Munster, P.N. Potentiation of a topoisomerase I inhibitor, karenitecin, by the histone deacetylase inhibitor valproic acid in melanoma: translational and phase I/II clinical trial. Clin. Cancer Res. 15 (2009) 2479–2487.

    Article  PubMed  CAS  Google Scholar 

  43. Valentini, A., Gravina, P., Federici, G. and Bernardini, S. Valproic acid induces apoptosis, p16INK4A upregulation and sensitization to chemotherapy in human melanoma cells. Cancer Biol. Ther. 6 (2007) 185–191.

    Article  PubMed  CAS  Google Scholar 

  44. Smit, N.P., van Nieuwpoort, F.A., Marrot, L., Out, C., Poorthuis, B., van Pelt, H., Meunier, J.R. and Pavel, S. Increased melanogenesis is a risk factor for oxidative DNA damage—study on cultured melanocytes and atypical nevus cells. Photochem. Photobiol. 84 (2008) 550–555.

    Article  PubMed  CAS  Google Scholar 

  45. Panich, U., Tangsupa-a-nan, V., Onkoksoong, T., Kongtaphan, K., Kasetsinsombat, K., Akarasereenont, P. and Wongkajornsilp, A. Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Arch. Pharm. Res. 34 (2011) 811–820.

    Article  PubMed  CAS  Google Scholar 

  46. Chodurek, E., Orchel, A., Orchel, J., Kurkiewicz, S., Gawlik, N., Dzierżewicz, Z. and Stępień, K. Evaluation of melanogenesis in A-375 cells in the presence of DMSO and analysis of pyrolytic profile of isolated melanin. ScientificWorldJournal 2012 doi:10.1100/2012/854096.

  47. Takahashi, H. and Parsons, P.G. In vitro phenotypic alteration of human melanoma cells induced by differentiating agents: heterogeneous effects on cellular growth and morphology, enzymatic activity, and antigenic expression. Pigment Cell Res. 3 (1990) 223–232.

    Article  PubMed  CAS  Google Scholar 

  48. Chodurek, E., Kurkiewicz, S., Turek, A., Marcinkowski, A., Trzebicka, B., Dzierżęga-Lęcznar, A., Stępień, K. and Dzierżewicz, Z. Pyrolysis and atomic force microscopy in structural studies of synthetic tyrosine-melanin and natural melanin from Sepia officinalis. Farm. Przegl. Nauk. 6 (2010) 46–52.

    Google Scholar 

  49. Stepień, K., Dzierzega-Lecznar, A., Kurkiewicz, S. and Tam, I Melanin from epidermal human melanocytes: study by pyrolytic GC/MS. J. Am. Soc. Mass Spectrom. 20 (2009) 464–468.

    Article  PubMed  Google Scholar 

  50. Dzierzega-Lecznar, A., Kurkiewicz, S., Stepien, K., Chodurek, E., Wilczok, T., Arzberger, T., Riederer, P. and Gerlach, M. GC/MS analysis of thermally degraded neuromelanin from the human substantia nigra. J. Am. Soc. Mass Spectrom. 15 (2004) 920–926.

    Article  PubMed  CAS  Google Scholar 

  51. Rosso, S., Zanetti, R., Sánchez, M.J., Nieto, A., Miranda, A., Mercier, M., Loria, D., Østerlind, A., Greinert, R., Chirlaque, M.D., Fabbrocini, G., Barbera, C., Sancho-Garnier, H., Lauria, C., Balzi, D. and Zoccola, M. Helios Working Group: Is 2,3,5-pyrroletricarboxylic acid in hair a better risk indicator for melanoma than traditional epidemiologic measures for skin phenotype? Am. J. Epidemiol. 165 (2007) 1170–1177.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Chodurek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chodurek, E., Orchel, A., Orchel, J. et al. Evaluation of melanogenesis in A-375 melanoma cells treated with 5,7-dimethoxycoumarin and valproic acid. Cell Mol Biol Lett 17, 616–632 (2012). https://doi.org/10.2478/s11658-012-0033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0033-4

Key words