Skip to main content

The strongest resistance of Staphylococcus aureus to erythromycin is caused by decreasing uptake of the antibiotic into the cells


The consequence of excessive use of macrolides is a high occurrence of mechanisms responsible for resistance to these drugs. Of 97 erythromycin-resistant bacterial strains gathered in the Wrocław area in Poland, 60% exhibited very high resistance, and those with the inducible MLSB (macrolide-lincosamide-streptogramin B) resistance phenotype predominated. Direct genetic investigation revealed that the erm genes coding for ribosomal methylases are the most frequently occurring erythromycin resistance-determining genes. No genetic resistance determinant was detected in 13% of the erythromycin-resistant strains. The efflux mechanism occurs in strains isolated from the nasopharyngeal cavity twice as often as in those isolated from other material, where the mechanism connected with target site modification predominates. Measurements of radiolabelled antibiotic accumulation inside bacterial cells revealed that in highly resistant strains (MIC > 1024 μg/ml), an important factor responsible for the resistance is the permeability barrier at the cell wall level. This would be a hitherto unknown mechanism of resistance to erythromycin in Staphylococcus aureus.



carbonyl cyanide m-chlorophenyl hydrazone


counts of radioactive decay per minute


minimum inhibitory concentration


constitutive resistance to macrolides, lincosamides and streptogramin B


inducible resistance to macrolides, lincosamides and streptogramin B after induction by erythromycin


resistance to macrolides and streptogramin B


  1. Gillespie, S.H., Hawkey, P.M. and Peacock, S. Staphylococcus aureus. in: Principles and practice of clinical bacteriology (John Wiley & Sons, Ed.), 2ed edition, England, 2006, 73–98.

  2. Sivaraman, K., Venkataraman, N. and Cole, A.M. Staphylococcus aureus nasal carriage and its contributing factors. Future Microbiol. 4 (2009) 999–1008.

    PubMed  Article  Google Scholar 

  3. Jensen, S.O. and Lyon, B.R. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol. 4 (2009) 565–582.

    PubMed  Article  CAS  Google Scholar 

  4. Aktas, Z., Aridogan, A., Kayacan, C.B. and Aydin, D. Resistance to macrolide, lincosamide and streptogramin antibiotics in staphylococci isolated in Istanbul, Turkey. J. Microbiol. 45 (2007) 286–290.

    PubMed  CAS  Google Scholar 

  5. Reynolds, E., Ross, J.I. and Cove, J.H. Msr(A) and related macrolide/streptogramin resistance determinants: incomplete transporters? Int. J. Antimicrob. Agents 22 (2003) 228–236.

    PubMed  Article  CAS  Google Scholar 

  6. Otto, M. and Götz, F. ABC transporters of staphylococci. Res. Microbiol. 152 (2001) 351–356.

    PubMed  Article  CAS  Google Scholar 

  7. Matsuoka, M., Inoue, M., Endou, K. and Nakajima, Y. Characteristic expression of three genes, msr(A), mph(C) and erm(Y), that confer resistance to macrolide antibiotics on Staphylococcus aureus. Fems Microbiol. Lett. 220 (2003) 287–293.

    PubMed  Article  CAS  Google Scholar 

  8. Prunier, A.L., Malbruny, B., Tandé, D., Picard, B. and Leclercq, R. Clinical isolates of Staphylococcus aureus with ribosomal mutations conferring resistance to macrolides. Antimicrob. Agents Chemother. 46 (2002) 3054–3056.

    PubMed  Article  CAS  Google Scholar 

  9. Kawai, M., Yamada, S., Ishidoshiro, A., Oyamada, Y., Ito, H. and Yamagishi, J. Cell-wall thickness: possible mechanism of acriflavine resistance in meticillin-resistant Staphylococcus aureus. J. Med. Microbiol. 58 (2009) 331–336.

    PubMed  Article  CAS  Google Scholar 

  10. National Committee for Clinical Laboratory Standard Institution: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard — fifth edition. NCCLS (2000) M7–A5.

  11. Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute. Eighteenth Informational supplement. (2008) M100–S18.

  12. Lina, G., Quaglia, A., Reverdy, M.E., Leclercq, R., Vendenesch, F. and Etienne, J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 43 (1999) 1062–1066.

    PubMed  CAS  Google Scholar 

  13. Wondrack, L., Massa, M., Yang, B.V. and Sutcliffe, J. Clinical strain of Staphylococcus aureus inactivates and causes efflux of macrolides. Antimicrob. Agents Chemother. 40 (1996) 992–998.

    PubMed  CAS  Google Scholar 

  14. Zhan, Z., Zhi-Qiang, L., Peng-Yuan, Z., Fu-Ai, T. and Ping-Chang, Y. Influence of efflux pump inhibitors on the multidrug resistance of Helicobacter pylori. World J. Gastroenterol. 16 (2010) 1279–1284.

    Article  Google Scholar 

  15. Peric, M., Bozdogan, B., Jacobs, M.R. and Appelbaum, P.C. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob. Agents Chemother. 47 (2003) 1017–1022.

    PubMed  Article  CAS  Google Scholar 

  16. Butaye, P., Cloeckaert, A. and Schwarz, S. Mobile genes coding for effluxmediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Int. J. Antimicrob. Agents 22 (2003) 205–210.

    PubMed  Article  CAS  Google Scholar 

  17. Hooper, D.C. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect. Dis. 2 (2002) 530–538.

    PubMed  Article  CAS  Google Scholar 

  18. Nakajima, Y. Mechanisms of bacterial resistance to macrolide antibiotics. J. Infect. Chemother. 5 (1999) 61–74.

    PubMed  Article  CAS  Google Scholar 

  19. Schmitz, F.J., Sadurski, R., Kray, A., Boos, M., Geisel, R., Köhrer, K., Verhoef, J. and Fluit, A.C. Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. J. Antimicrob. Chemother. 45 (2000) 891–894.

    PubMed  Article  CAS  Google Scholar 

  20. Spiliopoulou, I., Petinaki, E., Papandreou, E. and Dimitracopoulos, G. erm(C) is the predominant genetic determinant for the expression of resistance to macrolides among methicillin-resistant Staphylococcus aureus clinical isolates in Greece. J. Antimicrob. Chemother. 53 (2004) 814–817.

    PubMed  Article  CAS  Google Scholar 

  21. Matsuoka, M., Endou, K., Kobayashi, K., Inoue, M. and Nakajima, Y. A plazmid that encodes three genes for resistance to macrolide antibiotics in Staphylococcus aureus. FEMS Microbiol. Lett. 167 (1998) 221–227.

    PubMed  Article  CAS  Google Scholar 

  22. Roberts, M.C., Sutcliffe, J., Courvalin, P., Jensen, L.B., Rood, J. and Seppala, H. Nomenclature for macrolide and macrolide-lincosamidestreptogramin B resistance determinants. Antimicrob. Agents Chemother. 43 (1999) 2823–2830.

    PubMed  CAS  Google Scholar 

  23. Janas, T. and Janas, T. The selection of aptamers specific for membrane molecular targets. Cell. Mol. Biol. Lett. 16 (2011) 25–39.

    PubMed  Article  CAS  Google Scholar 

  24. Augustyniak, D., Mleczko, J. and Gutowicz, J. The immunogenicity of the liposome-associated outer membrane proteins (OMPs) of Moraxella catarrhalis. Cell. Mol. Biol. Lett. 5 (2010) 70–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jerzy Piątkowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Piątkowska, E., Piątkowski, J. & Przondo-Mordarska, A. The strongest resistance of Staphylococcus aureus to erythromycin is caused by decreasing uptake of the antibiotic into the cells. Cell Mol Biol Lett 17, 633–645 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • Transmembrane transporters
  • Antibiotic efflux
  • Resistance to erythromycin
  • Drug accumulation
  • Staphylococcus aureus
  • Ribosomal methylases
  • ermA
  • ermC
  • msr(A)
  • MLSB