Skip to main content
  • Mini review
  • Published:

microRNAs: fine tuning of erythropoiesis

Abstract

Cell proliferation and differentiation is a complex process involving many cellular mechanisms. One of the best-studied phenomena in cell differentiation is erythrocyte development during hematopoiesis in vertebrates. In recent years, a new class of small, endogenous, non-coding RNAs called microRNAs (miRNAs) emerged as important regulators of gene expression at the post-transcriptional level. Thousands of miRNAs have been identified in various organisms, including protozoa, fungi, bacteria and viruses, proving that the regulatory miRNA pathway is conserved in evolution. There are many examples of miRNA-mediated regulation of gene expression in the processes of cell proliferation, differentiation and apoptosis, and in cancer genesis. Many of the collected data clearly show the dependence of the proteome of a cell on the qualitative and quantitative composition of endogenous miRNAs. Numerous specific miRNAs are present in the hematopoietic erythroid line. This review attempts to summarize the state of knowledge on the role of miRNAs in the regulation of different stages of erythropoiesis. Original experimental data and results obtained with bioinformatics tools were combined to elucidate the currently known regulatory network of miRNAs that guide the process of differentiation of red blood cells.

Abbreviations

AE1:

anion exchanger 1

Ago2:

eukaryotic translation initiation factor 2C, 2

ARE:

antioxidant response element

DGCR8:

DiGeorge syndrome critical region gene 8

GATA-1:

GATA-binding protein 1 (globin transcription factor 1)

GATA-2:

GATA-binding protein 2

GSH:

glutathione

ha-siRNA:

heterochromatin-associated small interfering RNA

miRNA:

microRNA

nat-siRNA:

natural antisense small interfering RNA

ORF:

open reading frame

PHZ:

phenylhydrazine

piRNA:

piwi-interacting RNA

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

ROS:

reactive oxygen species

scn-siRNA:

siRNA-like scan (scn) RNA

siRNA:

small interfering RNA

tasiRNA:

trans-acting small interfering RNA

TRBP:

TAR (HIV-1) RNA-binding protein 2

References

  1. http://www.mirbase.org

  2. Azzouzi, I., Moest, H., Winkler, J., Fauchere, J.C., Gerber, A.P., Wollscheid, B., Stoffel, M., Schmugge, M. and Speer, O. MicroRNA-96 directly inhibits gamma-globin expression in human erythropoiesis. PLoS One 6 (2011) e22838.

    Article  PubMed  CAS  Google Scholar 

  3. Lytle, J.R., Yario, T.A. and Steitz, J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl. Acad. Sci. USA 104 (2007) 9667–9672.

    Article  PubMed  CAS  Google Scholar 

  4. Kloosterman, W.P., Wienholds, E., Ketting, R.F. and Plasterk, R.H. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 32 (2004) 6284–6291.

    Article  PubMed  CAS  Google Scholar 

  5. Tsai, N.P., Lin, Y.L. and Wei, L.N. MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem. J. 424 (2009) 411–418.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, X.J., Reyes, J.L., Chua, N.H. and Gaasterland, T. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 5 (2004) R65.

    Article  PubMed  Google Scholar 

  7. Lee, R.C., Feinbaum, R.L. and Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75 (1993) 843–854.

    Article  PubMed  CAS  Google Scholar 

  8. Guglielmelli, P., Tozzi, L., Bogani, C., Iacobucci, I., Ponziani, V., Martinelli, G., Bosi, A. and Vannucchi, A.M. Overexpression of microRNA-16-2 contributes to the abnormal erythropoiesis in polycythemia vera. Blood 117 (2011) 6923–6927.

    Article  PubMed  CAS  Google Scholar 

  9. Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K. and Shiekhattar, R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436 (2005) 740–744.

    Article  PubMed  CAS  Google Scholar 

  10. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., Lin, C., Socci, N.D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R.U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D.B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H.I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C.E., Nagle, J.W., Ju, J., Papavasiliou, F.N., Benzing, T., Lichter, P., Tam, W., Brownstein, M.J., Bosio, A., Borkhardt, A., Russo, J.J., Sander, C., Zavolan, M. and Tuschl, T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129 (2007) 1401–1414.

    Article  PubMed  CAS  Google Scholar 

  11. Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M. and Lai, E.C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130 (2007) 89–100.

    Article  PubMed  CAS  Google Scholar 

  12. Ruby, J.G., Jan, C.H. and Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature 448 (2007) 83–86.

    Article  PubMed  CAS  Google Scholar 

  13. Han, J., Lee, Y., Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang, B.T. and Kim, V.N. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125 (2006) 887–901.

    Article  PubMed  CAS  Google Scholar 

  14. Cifuentes, D., Xue, H., Taylor, D.W., Patnode, H., Mishima, Y., Cheloufi, S., Ma, E., Mane, S., Hannon, G.J., Lawson, N.D., Wolfe, S.A. and Giraldez, A.J. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328 (2010) 1694–1698.

    Article  PubMed  CAS  Google Scholar 

  15. http://www.ncbi.nlm.nih.gov/nuccore/NR_027350

  16. Tanzer, A. and Stadler, P.F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339 (2004) 327–335.

    Article  PubMed  CAS  Google Scholar 

  17. Ventura, A., Young, A.G., Winslow, M.M., Lintault, L., Meissner, A., Erkeland, S.J., Newman, J., Bronson, R.T., Crowley, D., Stone, J.R., Jaenisch, R., Sharp, P.A. and Jacks, T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132 (2008) 875–886.

    Article  PubMed  CAS  Google Scholar 

  18. http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000687

  19. Ota, A., Tagawa, H., Karnan, S., Tsuzuki, S., Karpas, A., Kira, S., Yoshida, Y. and Seto, M. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64 (2004) 3087–3095.

    Article  PubMed  CAS  Google Scholar 

  20. Bruchova, H., Yoon, D., Agarwal, A.M., Mendell, J. and Prchal, J.T. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp. Hematol. 35 (2007) 1657–1667.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, L., Flygare, J., Wong, P., Lim, B. and Lodish, H.F. miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev. 25 (2011) 119–124.

    Article  PubMed  Google Scholar 

  22. Wang, Q., Huang, Z., Xue, H., Jin, C., Ju, X.L., Han, J.D. and Chen, Y.G. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 111 (2008) 588–595.

    Article  PubMed  CAS  Google Scholar 

  23. Yu, D., dos Santos, C.O., Zhao, G., Jiang, J., Amigo, J.D., Khandros, E., Dore, L.C., Yao, Y., D’souza, J., Zhang, Z., Ghaffari, S., Choi, J., Friend, S., Tong, W., Orange, J.S., Paw, B.H. and Weiss, M.J. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 24 (2010) 1620–1633.

    Article  PubMed  CAS  Google Scholar 

  24. Lu, J., Guo, S., Ebert, B.L., Zhang, H., Peng, X., Bosco, J., Pretz, J., Schlanger, R., Wang, J.Y., Mak, R.H., Dombkowski, D.M., Preffer, F.I., Scadden, D.T. and Golub, T.R. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev. Cell 14 (2008) 843–853.

    Article  PubMed  CAS  Google Scholar 

  25. Dore, L.C., Amigo, J.D., Dos Santos, C.O., Zhang, Z., Gai, X., Tobias, J. W., Yu, D., Klein, A. M., Dorman, C., Wu, W., Hardison, R.C., Paw, B.H. and Weiss, M.J. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl. Acad. Sci. USA 105 (2008) 3333–3338.

    Article  PubMed  CAS  Google Scholar 

  26. Pase, L., Layton, J.E., Kloosterman, W.P., Carradice, D., Waterhouse, P.M. and Lieschke, G.J. miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood 113 (2009) 1794–1804.

    Article  PubMed  CAS  Google Scholar 

  27. Anguita, E., Hughes, J., Heyworth, C., Blobel, G.A., Wood, W.G. and Higgs, D.R. Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J. 23 (2004) 2841–2852.

    Article  PubMed  CAS  Google Scholar 

  28. Rasmussen, K.D., Simmini, S., Abreu-Goodger, C., Bartonicek, N., Di Giacomo, M., Bilbao-Cortes, D., Horos, R., Von Lindern, M., Enright, A.J. and O’Carroll, D. The miR-144/451 locus is required for erythroid homeostasis. J. Exp. Med. 207 (2010) 1351–1358.

    Article  PubMed  CAS  Google Scholar 

  29. Patrick, D.M., Zhang, C.C., Tao, Y., Yao, H., Qi, X., Schwartz, R.J., Jun-Shen Huang, L. and Olson, E.N. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev. 24 (2010) 1614–1619.

    Article  PubMed  CAS  Google Scholar 

  30. Aitken, A. 14-3-3 proteins: a historic overview. Semin. Cancer Biol. 16 (2006) 162–172.

    Article  PubMed  CAS  Google Scholar 

  31. Sangokoya, C., Telen, M.J. and Chi, J.T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116 (2010) 4338–4348.

    Article  PubMed  CAS  Google Scholar 

  32. Fu, Y.F., Du, T.T., Dong, M., Zhu, K.Y., Jing, C.B., Zhang, Y., Wang, L., Fan, H.B., Chen, Y., Jin, Y., Yue, G.P., Chen, S.J., Chen, Z., Huang, Q.H., Jing, Q., Deng, M. and Liu, T.X. Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis. Blood 113 (2009) 1340–1349.

    Article  PubMed  CAS  Google Scholar 

  33. Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., Valtieri, M., Calin, G.A., Liu, C.G., Sorrentino, A., Croce, C.M. and Peschle, C. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA 102 (2005) 18081–18086.

    Article  PubMed  CAS  Google Scholar 

  34. Zhao, H., Kalota, A., Jin, S. and Gewirtz, A.M. The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood 113 (2009) 505–516.

    Article  PubMed  CAS  Google Scholar 

  35. Andolfo, I., De Falco, L., Asci, R., Russo, R., Colucci, S., Gorrese, M., Zollo, M. and Iolascon, A. Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica 95 (2010) 1244–1252.

    Article  PubMed  CAS  Google Scholar 

  36. Felli, N., Pedini, F., Romania, P., Biffoni, M., Morsilli, O., Castelli, G., Santoro, S., Chicarella, S., Sorrentino, A., Peschle, C. and Marziali, G. MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 94 (2009) 479–486.

    Article  PubMed  CAS  Google Scholar 

  37. Bank, A. Regulation of human fetal hemoglobin: new players, new complexities. Blood 107 (2006) 435–443.

    Article  PubMed  CAS  Google Scholar 

  38. Schechter, A.N. Hemoglobin research and the origins of molecular medicine. Blood 112 (2008) 3927–3938.

    Article  PubMed  CAS  Google Scholar 

  39. Hamilton, A.J. and Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286 (1999) 950–952.

    Article  PubMed  CAS  Google Scholar 

  40. Lippman, Z., Gendrel, A.V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K., Mittal, V., May, B., Kasschau, K.D., Carrington, J.C., Doerge, R.W., Colot, V. and Martienssen, R. Role of transposable elements in heterochromatin and epigenetic control. Nature 430 (2004) 471–476.

    Article  PubMed  CAS  Google Scholar 

  41. Reinhart, B.J. and Bartel, D.P. Small RNAs correspond to centromere heterochromatic repeats. Science 297 (2002) 1831.

    Article  PubMed  CAS  Google Scholar 

  42. Allen, E., Xie, Z., Gustafson, A.M. and Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121 (2005) 207–221.

    Article  PubMed  CAS  Google Scholar 

  43. Borsani, O., Zhu, J., Verslues, P.E., Sunkar, R. and Zhu, J.K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123 (2005) 1279–1291.

    Article  PubMed  CAS  Google Scholar 

  44. Mochizuki, K. and Gorovsky, M.A. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev. 19 (2005) 77–89.

    Article  PubMed  CAS  Google Scholar 

  45. Seto, A.G., Kingston, R.E. and Lau, N.C. The coming of age for Piwi proteins. Mol. Cell 26 (2007) 603–609.

    Article  PubMed  CAS  Google Scholar 

  46. Choong, M. L., Yang, H.H. and McNiece, I. MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp. Hematol. 35 (2007) 551–564.

    Article  PubMed  CAS  Google Scholar 

  47. Wang, F., Yu, J., Yang, G.H., Wang, X.S. and Zhang, J.W. Regulation of erythroid differentiation by miR-376a and its targets. Cell Res. 21 (2011) 1196–1209.

    Article  PubMed  CAS  Google Scholar 

  48. Starczynowski, D.T., Kuchenbauer, F., Argiropoulos, B., Sung, S., Morin, R., Muranyi, A., Hirst, M., Hogge, D., Marra, M., Wells, R.A., Buckstein, R., Lam, W., Humphries, R.K. and Karsan, A. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat. Med. 16 (2010) 49–58.

    Article  PubMed  CAS  Google Scholar 

  49. Labbaye, C., Spinello, I., Quaranta, M.T., Pelosi, E., Pasquini, L., Petrucci, E., Biffoni, M., Nuzzolo, E.R., Billi, M., Foa, R., Brunetti, E., Grignani, F., Testa, U. and Peschle, C. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat. Cell Biol. 10 (2008) 788–801.

    Article  PubMed  CAS  Google Scholar 

  50. Grabher, C., Payne, E.M., Johnston, A.B., Bolli, N., Lechman, E., Dick, J.E., Kanki, J.P. and Look, A.T. Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia 25 (2011) 506–514.

    Article  PubMed  CAS  Google Scholar 

  51. Romania, P., Lulli, V., Pelosi, E., Biffoni, M., Peschle, C. and Marziali, G. MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors. Br. J. Haematol. 143 (2008) 570–580.

    PubMed  CAS  Google Scholar 

  52. Fazi, F., Rosa, A., Fatica, A., Gelmetti, V., De Marchis, M.L., Nervi, C. and Bozzoni, I. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123 (2005) 819–831.

    Article  PubMed  CAS  Google Scholar 

  53. Sankaran, V.G., Menne, T.F., Scepanovic, D., Vergilio, J.A., Ji, P., Kim, J., Thiru, P., Orkin, S.H., Lander, E.S. and Lodish, H.F. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc. Natl. Acad. Sci. USA 108 (2011) 1519–1524.

    Article  PubMed  CAS  Google Scholar 

  54. Madanecki, P., Kapoor, N., Bebok, Z., Ochocka, R., Collawn, J.F. and Bartoszewski, R. Regulation of angiogenesis by hypoxia: the role of microRNA. Cell. Mol. Biol. Lett. DOI: 10.2478/s11658-012-0037-0, in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander F. Sikorski.

Additional information

These authors contributed equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Listowski, M.A., Heger, E., Bogusławska, D.M. et al. microRNAs: fine tuning of erythropoiesis. Cell Mol Biol Lett 18, 34–46 (2013). https://doi.org/10.2478/s11658-012-0038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0038-z

Key words