Skip to main content

Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro

Abstract

Although stem cells are present in various adult tissues and body fluids, bone marrow has been the most popular source of stem cells for treatment of a wide range of diseases. Recent results for stem cells from adipose tissue have put it in a position to compete for being the leading therapeutic source. The major advantage of these stem cells over their counterparts is their amazing proliferative and differentiation potency. However, their pancreatic lineage transdifferentiation competence was not compared to that for bone marrow-derived stem cells. This study aims to identify an efficient source for transdifferentiation into pancreatic islet-like clusters, which would increase potential application in curative diabetic therapy. The results reveal that mesenchymal stem cells (MSC) derived from bone marrow and subcutaneous adipose tissue can differentiate into pancreatic islet-like clusters, as evidenced by their islet-like morphology, positive dithizone staining and expression of genes such as Nestin, PDX1, Isl 1, Ngn 3, Pax 4 and Insulin. The pancreatic lineage differentiation was further corroborated by positive results in the glucose challenge assay. However, the results indicate that bone marrow-derived MSCs are superior to those from subcutaneous adipose tissue in terms of differentiation into pancreatic islet-like clusters. In conclusion, bone marrow-derived MSC might serve as a better alternative in the treatment of diabetes mellitus than those from adipose tissue.

Abbreviations

ADSC:

adipose-derived stem cells

APC:

allophycocyanin

BD-FACS:

Becton Dickinson-fluorescent activated cell sorting

BM:

bone marrow

BMSC:

bone marrow-derived stem cells

CD:

cluster of differentiation

Cy:

cyanine

DMEM-LG:

Dulbecco’s modified eagle medium - low glucose

DPBS:

Dulbecco’s phosphate buffer saline

DTZ:

dithizone

ECM:

extracellular matrix

EDTA:

ethylene diamine tetra acetic acid

FBS:

fetal bovine serum

FITC:

fluorescein isothiocyanate

IDT:

integrated DNA technologies

HLA-DR:

human leukocyte antigen-DR

Isl 1:

islet 1

MSC:

mesenchymal stem cells

Ngn 3:

neurogenin 3

Pax 4:

paired box gene 4

PDX 1:

pancreatic duodenal homeobox 1

PE:

phyco erythrin

PER-CP:

peridininchlorophyll-protein-complex

SVF:

stromal vascular fraction

References

  1. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 284 (1999) 143–147.

    PubMed  Article  CAS  Google Scholar 

  2. Horwitz, E.M., Prockop, D.J., Fitzpatrik, L.A., Koo, W.W., Gordon, P.L., Neel, M., Sussman, M., Orchard, P., Marx, J.C., Pyeritz, R.E. and Brenner, M.K. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Med. 5 (1999) 309–313.

    PubMed  Article  CAS  Google Scholar 

  3. Nathan, S., Das, D.S., Thambyah, A. and Fen, C. Cell based therapy in the repair of osteochondral defects: A novel use for adipose tissue. Tissue Eng. 9 (2003) 733–744.

    PubMed  Article  CAS  Google Scholar 

  4. Garcia-Olmo, D., Garcia-Arranz, M., Herreros, D., Pascual, I., Peiro, C. and Rodriguez-Montes, J.A. A phase 1 clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis. Colon Rectum 48 (2005) 1416–1423.

    PubMed  Article  Google Scholar 

  5. Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. and Hedrick, M.H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7 (2001) 211–228.

    PubMed  Article  CAS  Google Scholar 

  6. Jurgens, W., Oedayrajsingh-Varma, M., Helder, M., ZandiehDoulabi, B., Schouten, T., Kuik, D., Ritt, M. and van Milligen, F. Effect of tissueharvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 332 (2008) 415–426.

    PubMed  Article  Google Scholar 

  7. Wild, S., Roglic, G., Green, A., Sicree, R. and King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27 (2004) 1047–1053.

    PubMed  Article  Google Scholar 

  8. Shapiro, A.M., Lakey, J.R., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M. and Rajotte, R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid free immunosuppressive regimen. N. Engl. J. Med. 343 (2000) 230–238.

    PubMed  Article  CAS  Google Scholar 

  9. Yechoor, V. and Chan, L. Minireview: beta cell replacement therapy for diabetes in the 21st century: manipulation of cell fate by directed differentiation. Mol. Endocrinol. 24 (2010) 1501–1511.

    PubMed  Article  CAS  Google Scholar 

  10. Tang, D.Q., Cao. L.Z., Burkhardt, B.R., Xia, C.Q., Litherland, S.A., Atkinson, M.A. and Yang, L.J. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53 (2004) 1721–1732.

    PubMed  Article  CAS  Google Scholar 

  11. Timper, K., Seboek, D., Eberhardt, M., Linscheid, P., Christ-Crain, M., Keller, U., Muller, B. and Zulewski, H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 341 (2006) 1135–1140.

    PubMed  Article  CAS  Google Scholar 

  12. Oh, S.H., Muzzonigro, T.M., Bae, S.H., LaPlante, J.M., Hatch, H.M. and Petersen, B.E. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab. Invest. 84 (2004) 607–617.

    PubMed  Article  CAS  Google Scholar 

  13. Mitchell, J.B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z.E., Kloster, A., Halvorsen, Di., Storms, Y., Goh, R.W., Kilroy, B.G., Wu, X. and Gimble, J.M. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 240 (2006) 376–385.

    Article  Google Scholar 

  14. Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X. and Cui, Z. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem. Funct. 26 (2008) 664–675.

    PubMed  Article  CAS  Google Scholar 

  15. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5 (2003) 362–369.

  16. Bai, X., Yan, Y., Song, Y.H., Seidensticker, M., Rabinovich, B., Metzele, R., Bankson, J.A., Vykoukal, D. and Alt, E. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur. Heart J. 31 (2010) 489–501.

    PubMed  Article  CAS  Google Scholar 

  17. Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P. and Hedrick, M.H. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol. Biol. Cell 13 (2002) 4279–4295.

    PubMed  Article  CAS  Google Scholar 

  18. Rebelatto, C.K., Aguiar, A.M., Moretao, M.P., Senegaglia, A.C., Hansen, P., Barchiki, F., Oliveira, J., Martins, J., Kuligovski, C., Mansur, F., Christofis, A., Amaral, V.F., Brofman, P.S., Goldenberg, S., Nakao L.S. and Correa, A. dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp. Biol. Med. 233 (2008) 901–913.

    Article  CAS  Google Scholar 

  19. Sun, Y., Chen, L., Hou, X.G., Hou W.K., Dong, J.J., Sun, L., Tang, K.X., Wang, B., Song, J., Li, H. and Wang, K.X. Differentiation of bone marrowderived mesenchymal stem cells from diabetic patients into insulinproducing cells in vitro. Chin. Med. J. 120 (2007) 771–776.

    PubMed  CAS  Google Scholar 

  20. Okura, H., Komoda, H., Fumimoto, Y., Lee, C.M., Nishida, T., Sawa, Y., and Matsuyama, A. Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. J. Artif. Organs 12 (2009) 123–130.

    PubMed  Article  CAS  Google Scholar 

  21. Dhanasekaran, M., Indumathi, S., Kanmani, A., Revathy, K.M., Rajkumar, J.S. and Sudarsanam, D. Surface antigenic profiling of stem cells from human omentum fat in comparison with subcutaneous fat and bone marrow. Cytotechnology 64 (2012) 497–509.

    Article  CAS  Google Scholar 

  22. Bonner-Weir, S. and Sharma, A. Pancreatic stem cells. J. Pathol. 197 (2002) 519–526.

    PubMed  Article  Google Scholar 

  23. Halban, P.A. Cellular sources of new pancreatic beta cells and therapeutic implications for regenerative medicine. Nat. Cell Biol. 6 (2004) 1021–1025.

    PubMed  Article  CAS  Google Scholar 

  24. Chelluri, L.K., Kancherla, R., Turlapati, N., Vemuri, S., Debnath, T., Kumar, P., Beevi, S.S. and Kamaraju, R.S. Improved differentiation protocol of rat bone marrow precursors to functional islet like cells. Stem Cell Stud. 1 (2011) 36–41.

    Article  CAS  Google Scholar 

  25. Sordi, V., Melzi, R., Mercalli, A., Formicola, R., Doglioni, C., Tiboni, F., Ferrari, G., Nano, R., Chwalek, K., Lammert, E., Bonifacio, E., Borg, D. and Piemonti, L. Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function. Stem Cells 28 (2010) 386–386.

    Article  CAS  Google Scholar 

  26. De Ugarte, D.A., Alfonso, Z., Zuk, P.A., Elbarbury, A., Zhu, M., Ashjian, P., Benhaim, P., Hedrick, M.H. and Fraser, J.K. Differential expression of stem cell mobilization associated-molecules on multi lineage cells from adipose tissue and bone marrow. Immunol. Lett. 89 (2003) 267–270.

    PubMed  Article  Google Scholar 

  27. Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L. and Verfaillie, C.M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cell. Blood 98 (2001) 2615–2625.

    PubMed  Article  CAS  Google Scholar 

  28. Choi, J.B., Uchino, H., Azuma, K., Iwashita, N., Tanaka, Y., Mochizuki, H., Migita, M., Shimada, T., Kawamori, R. and Watada, H. Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46 (2003) 1366–1374.

    PubMed  Article  CAS  Google Scholar 

  29. Lechner, A., Yang, Y.G., Blacken, R.A., Wang, L., Nolan, A.L. and Habener, J.F. No Evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53 (2004) 616–623.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanasekaran Marappagounder.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marappagounder, D., Somasundaram, I., Dorairaj, S. et al. Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro . Cell Mol Biol Lett 18, 75–88 (2013). https://doi.org/10.2478/s11658-012-0040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0040-5

Key words

  • Diabetes
  • Islet-like clusters
  • Bone marrow
  • Subcutaneous fat
  • Mesenchymal stem cells
  • Transdifferentiation
  • Flow cytometry
  • Intracellular staining
  • Dithizone staining
  • Glucose challenge assay