Skip to main content

A nanoformulation of siRNA and its role in cancer therapy: In vitro and in vivo evaluation

Abstract

Overexpression of anti-apoptotic Bcl-2 is often observed in a wide variety of human cancers. It prevents the induction of apoptosis in neoplastic cells and contributes to resistance to chemotherapy. RNA interference has emerged as an efficient and selective technique for gene silencing. The potential to use small interfering RNA (siRNA) as a therapeutic agent for the treatment of cancer has elicited a great deal of interest. However, insufficient cellular uptake and poor stability have limited its therapeutic applications. The purpose of this study was to prepare chitosan nanoparticles via ionic gelation of chitosan by tripolyphosphate for effective delivery of siRNA to silence the anti-apoptotic Bcl-2 gene in neoplastic cells. Chitosan nanoparticles loaded with siRNA were in the size range 190 to 340 nm with a polydispersive index ranging from 0.04 to 0.2. They were able to completely bind with siRNA, provide protection against nuclease degradation, and enhance the transfection. Cell culture studies revealed that nanoparticles with entrapped siRNA could efficiently silence the antiapoptotic Bcl-2 gene. Studies on Swiss albino mice showed that siRNA could be effectively delivered through nanoparticles. There was significant decrease in the tumor volume. Blocking the expression of anti-apoptotic Bcl-2 can enhance the sensitivity of cancerous cells to anti-cancer drugs and the apoptosis rate. Therefore, nanoformulations with siRNA can be promoted as an adjuvant therapy in combination with anti-cancer drugs.

Abbreviations

DEPC:

diethylpyrocarbonate

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

fetal bovine serum

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PDI:

polydispersive index

RNAi:

RNA interference

RTPCR:

reverse transcriptase polymerase chain reaction

SDS-PAGE:

sodium dodecyl sulphate-polyacrylamide

SEM:

scanning electron microscopy

siRNA:

small interfering RNA

TPP:

pentasodium tripolyphosphate

References

  1. Lowe, S.W. and Lin, A.W. Apoptosis in cancer. Carcinogenesis 21 (2000) 485–496.

    PubMed  Article  CAS  Google Scholar 

  2. Chandra, J. and Kaufmann, S.H. Apoptotic pathways in cancer progression and treatment, in: Signal Transduction and Human Disease (Finkel, T. and Gutkind, J.S. Eds.), John Wiley & Sons, Inc., Hoboken, NJ, USA. (2003) 143–170. DOI: 10.1002/0471482706.ch4.

    Chapter  Google Scholar 

  3. Fulda, S., Meyer, E. and Debatin, K.M. Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21 (2002) 2283–2291.

    PubMed  Article  CAS  Google Scholar 

  4. Reed, J.C. Apoptosis-targeted therapies for cancer. Cancer Cell 3 (2003) 17–30.

    PubMed  Article  CAS  Google Scholar 

  5. Brown, J.M. and Attardi, L.D. The role of apoptosis in cancer development and treatment response. Nat. Rev. Cancer 5 (2005) 231–237.

    PubMed  Article  CAS  Google Scholar 

  6. Vousden, K.H. Activation of the p53 tumor suppressor protein. Biochim. Biophys. Acta-Rev. Cancer 1602 (2002) 47–59.

    Article  CAS  Google Scholar 

  7. Brown J.M. and Wouters, B.G. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 59 (1999) 1391–1404.

    PubMed  CAS  Google Scholar 

  8. Banic, B., Nipic, D., Suput, D., Milisav, I. DMSO modulates the pathway of apoptosis triggering. Cell. Mol. Biol. Lett. 16 (2011) 328–341.

    PubMed  Article  CAS  Google Scholar 

  9. Adams J. M. and Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281 (1998) 1322–1345.

    PubMed  Article  CAS  Google Scholar 

  10. Cory, S., Huang, D.C.S. and Adams, J.M. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22 (2003) 8590–8607.

    PubMed  Article  CAS  Google Scholar 

  11. Reed, J.C. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 17 (1999) 2941–2961.

    PubMed  CAS  Google Scholar 

  12. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T. and Taniguchi, T. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288 (2000) 1053–1061.

    PubMed  Article  CAS  Google Scholar 

  13. Bouillet, P., Cory, S., Zhang, L.C., Strasser, A. and Adams, J.M. Degenerative disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim. Dev. Cell 1 (2001) 645–653.

    PubMed  Article  CAS  Google Scholar 

  14. Sattler, M., Liang, H., Nettesheim, D., Meadows, R.P., Harlan, J.E., Eberstadt, M., Yoon, H.S., Shuker, S.B., Chang, B.S. and Minn, A.J. Structure of Bcl-xLBak peptide complex: recognition between regulators of apoptosis. Science 275 (1997) 983–994.

    PubMed  Article  CAS  Google Scholar 

  15. Kelekar A. and Thompson, C.B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8 (1998) 324–330.

    PubMed  Article  CAS  Google Scholar 

  16. Meier, P., Finch A. and Evan, G. Apoptosis in development. Nature 6805 (2000) 796–801.

    Article  Google Scholar 

  17. Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Belli, B.A., Bruncko, M., Deckwerth, T.L., Dinges, J. and Hajduk, P.J. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435 (2005) 677–681.

    PubMed  Article  CAS  Google Scholar 

  18. Tan, F.L. and Yin, J.Q. Application of RNAi to cancer research and therapy. Front Biosci. 10 (2005) 1946–1960.

    PubMed  Article  CAS  Google Scholar 

  19. Abdelrahim, M., Safe, S., Baker, C. and Abudayyeh, A. RNAi and cancer: Implications and applications. Int. J. RNA Gene Target Res. 2 (2006) 136–152.

    CAS  Google Scholar 

  20. Akhtar, S. and Benter, I.F. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 117 (2007) 3623–3632.

    PubMed  Article  CAS  Google Scholar 

  21. Bozkir, A. and Saka, O.M. Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv. 11 (2004) 107–112.

    PubMed  Article  CAS  Google Scholar 

  22. Mao, H.Q., Roy, K., Troung-Le, V.L., Janes, K.A., Lin, K.Y., Wang, Y., August, J.T. and Leong, K.W. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Control. Release 70 (2001) 399–421.

    PubMed  Article  CAS  Google Scholar 

  23. Katas, H. and Alpar, H.O. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release 115 (2006) 216–225.

    PubMed  Article  CAS  Google Scholar 

  24. Agnihotri, S.A., Mallikarjuna N.N. and Aminabhavi, T.M. Recent advances on chitosan-based micro-and nanoparticles in drug delivery, J. Control. Release 100 (2004) 5–28.

    PubMed  Article  CAS  Google Scholar 

  25. Roy, K., Mao, H.Q., Huang, S.K. and Leong, K.W. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5 (1999) 387–397.

    PubMed  Article  CAS  Google Scholar 

  26. Jagani, H.V., Josyula, V.R., Hariharapura, R.C., Palanimuthu, V.R. and Gang, S.S. M. Nanoformulation of siRNA silencing Bcl-2 gene and its implication in cancer therapy, Arzneimittel-Forsch. 61 (2011) 577–591.

    CAS  Google Scholar 

  27. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983) 55–63.

    PubMed  Article  CAS  Google Scholar 

  28. Denizot, F. and Lang, R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89 (1986) 271–277.

    PubMed  Article  CAS  Google Scholar 

  29. Mullis, K.B. Process for amplifying nucleic acid sequences. Google Patents (1987).

  30. Mullis, K.B., Faloona, F.A., Scharf, S.J., Saiki, R.K., Horn, G.T. and Erlich, H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 51 (1986) 263–273.

    PubMed  Article  CAS  Google Scholar 

  31. Lanciotti, R.S., Calisher, C.H., Gubler, D.J., Chang, G J. and Vorndam, A.V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J. Clin. Microbiol. 30 (1992) 545–560.

    PubMed  CAS  Google Scholar 

  32. Burnette, W.N. Western blotting: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112 (1981) 195–203.

    PubMed  Article  CAS  Google Scholar 

  33. De Martimprey, H., Bertrand, J.R., Fusco, A., Santoro, M., Couvreur, P., Vauthier, C. and Malvy, C. siRNA nanoformulation against the ret/PTC1 junction oncogene is efficient in an in vivo model of papillary thyroid carcinoma. Nucleic Acids Res. 36 (2008) e2–e2.

    PubMed  Article  Google Scholar 

  34. Goodsell, D.S. The molecular perspective: Bcl-2 and apoptosis. The Oncologist 7 (2002) 259–260.

    PubMed  Article  Google Scholar 

  35. Ma, W.W. and Adjei, A.A. Novel agents on the horizon for cancer therapy. CA Cancer J. Clin. 59 (2009) 111–137.

    PubMed  Article  Google Scholar 

  36. Howard, K.A., Rahbek, U.L., Liu, X., Damgaard, C.K., Glud, S.Z., Andersen, M.A., Hovgaard, M.B., Schmitz, A., Nyengaard, J.R. and Besenbacher, F. RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Mol. Ther. 14 (2006) 476–484.

    PubMed  Article  CAS  Google Scholar 

  37. Lee, D., Zhang, W., Shirley, S.A., Kong, X., Hellermann, G.R., Lockey, R.F. and Mohapatra, S.S. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm. Res. 24 (2007) 157–167.

    PubMed  Article  CAS  Google Scholar 

  38. Verma, N.K., Davies, A.M., Long, A., Kelleher, D. and Volkov, Y. STAT3 knockdown by siRNA induces apoptosis in human cutaneous T-cell lymphoma line Hut78 via downregulation of Bcl-xL. Cell. Mol. Biol. Lett. 15 (2010) 342–355.

    PubMed  Article  CAS  Google Scholar 

  39. Akhtar, S. and Benter, I.F. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 117 (2007) 3623–3643.

    PubMed  Article  CAS  Google Scholar 

  40. Mao, S., Sun, W. and Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Delivery Rev. 62 (2010) 12–27.

    Article  CAS  Google Scholar 

  41. Dass, C.R. and Choong, P.F.M. The use of chitosan formulations in cancer therapy. J. Microencapsul. 25 (2008) 275–279.

    PubMed  Article  CAS  Google Scholar 

  42. De La Fuente, M., Ravi, A.M., Paolicelli, P., Sanchez, A., Seijo, B. and Alonso, M.J. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv. Drug Delivery Rev. 62 (2010) 100–117.

    Article  Google Scholar 

  43. Kim, T.H., Jiang, H.L., Jere, D., Park, I.K., Cho, M.H., Nah, J.W., Choi, Y.J., Akaike, T. and Cho, C.S. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog. Polym. Sci. 32 (2007) 726–753.

    Article  CAS  Google Scholar 

  44. Spandana, K., Hitesh, J., Vasanth, R.P., Jesil, M.A., Mallikarjuna, R.C. and Venkata R.J. In vitro and in vivo evaluation of the efficacy of nanoformulation of siRNA as an adjuvant to improve the anticancer potential of cisplatin. Exp. Mol. Pathol. 2012; http://dx.doi.org/10.1016/j.yexmp.2012.10.007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josyula Venkata Rao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jagani, H., Rao, J.V., Palanimuthu, V.R. et al. A nanoformulation of siRNA and its role in cancer therapy: In vitro and in vivo evaluation. Cell Mol Biol Lett 18, 120–136 (2013). https://doi.org/10.2478/s11658-012-0043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-012-0043-2

Key words

  • Chitosan
  • RNA interference
  • siRNA
  • Bcl-2
  • Apoptosis
  • Cancer
  • Nanoformulation