Skip to main content

The role of passive calcium influx through the cell membrane in galvanotaxis

Abstract

Passive calcium influx is one of the theories to explain the cathodal galvanotaxis of cells that utilize the electric field to guide their motion. When exposed to an electric field, the intracellular fluid becomes polarized, leading to positive charge accumulation on the cathodal side and negative charge accumulation on the anodal side. The negative charge on the anodal side attracts extracellular calcium ions, increasing the anodal calcium concentration, which is supposed to decrease the mobile properties of this side. Unfortunately, this model does not capture the Ca2+ dynamics after its presentation to the intracellular fluid. The ions cannot permanently accumulate on the anodal side because that would build a potential drop across the cytoplasm leading to an ionic current, which would carry positive ions (not only Ca2+) from the anodal to the cathodal part through the cytoplasm. If the cytoplasmic conductance for Ca2+ is low enough compared to the membrane conductance, the theory could correctly predict the actual behavior. If the ions move through the cytoplasm at a faster rate, compensating for the passive influx, this theory may fail. This paper contains a discussion of the regimes of validity for this theory.

Abbreviations

PMCA:

plasma membrane Ca2+ ATPase

PNP equation:

Poisson-Nernst-Planck equation

SERCA:

sarco/endoplasmic reticulum Ca2+ ATPase

TRPC:

transient receptor potential cation channels

VGCC:

voltage-gated calcium channel

References

  1. Ananthakrishnan, R. and Ehrlicher, A. The forces behind cell movement. Int. J. Biol. Sci. 3 (2007) 303–317.

    PubMed  Article  CAS  Google Scholar 

  2. Korohoda, W., Kucia, M., Wybieralska, E., Wianecka-Skoczeń, M., Waligórska, A., DrukaŁa, J. and Madeja, Z. Solute-dependent activation of cell motility in strongly hypertonic solutions in Dictyostelium discoideum, Human Melanoma HTN-140 cells and Walker 256 Carcinosarcoma cells. Cell. Mol. Biol. Lett. 16 (2011) 412–430.

    PubMed  Article  CAS  Google Scholar 

  3. Shanley, L.J., Walczysko, P., Bain, M., MacEwan, D.J. and Zhao, M. Influx of extracellular Ca2+ is necessary for electrotaxis in Dictyostelium. J. Cell Sci. 119 (2006) 4741–4748.

    PubMed  Article  CAS  Google Scholar 

  4. Djamgoz, M.B.A. Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity. J. Cell Sci. 114 (2001) 2697–2705.

    PubMed  CAS  Google Scholar 

  5. Alt, W., Deutsch, A. and Dunn, G. Dynamics of cell and tissue motion. Birkhauser, Basel, 1997.

    Book  Google Scholar 

  6. Bray, D. Cell movements: from molecules to motility. 2nd edition, Garland Publishing, New York, 2000.

    Google Scholar 

  7. Barnes, F.S. and Greenbaum. B. (Eds). Handbook of biological effects of electromagnetic fields. CRC press, Boca Raton, 2007.

    Google Scholar 

  8. Nuccitelli, R. A role for endogenous electric fields in wound healing. Curr. Top. Dev. Biol. 58 (2003) 1–26.

    PubMed  Article  Google Scholar 

  9. McCaig, C.D., Rajnicek, A.M., Song, B. and Zhao, M. Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85 (2005) 943–978.

    PubMed  Article  Google Scholar 

  10. Mycielska, M.E. and Djamgoz, M.B.A. Cellular mechanisms of directcurrent electric field effects: galvanotaxis and metastatic disease. J. Cell Sci. 117 (2004) 1631–1639.

    PubMed  Article  CAS  Google Scholar 

  11. Fang, K.S., Behnom, F., Nuccitelli, R. and Isseroff, R.R. Migration of human keratinocytes in electric fields requires growth factors and extracellular calcium. J. Invest. Dermatol. 111 (1998) 751–756.

    PubMed  Article  CAS  Google Scholar 

  12. Trollinger, D.R., Isseroff, R.R. and Nuccitelli, R. Calcium channel blockers inhibit galvanotaxis in human keratinocytes. J. Cell. Physiol. 193 (2002) 1–9.

    PubMed  Article  CAS  Google Scholar 

  13. Aonuma, M., Kadano, T. and Kawano, T. Inhibition of anodic galvanotaxis of Green Paramecia by T-type calcium channel inhibitors. Z. Naturforsch. 62c (2007) 93–102.

    Google Scholar 

  14. Wang, G.X. and Poo, M.M. Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434 (2005) 898–904.

    PubMed  Article  CAS  Google Scholar 

  15. Torossian, F., Bisson, A., Vannier, J.P., Boyer, O. and Lamacz, M. TRPC expression in mesenchymal cells. Cell. Mol. Biol. Lett. 15 (2010) 600–610.

    PubMed  Article  CAS  Google Scholar 

  16. Cooper, M.S. and Keller, R.E. Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proc. Natl. Acad. Sci. USA 81 (1984) 160–164.

    PubMed  Article  CAS  Google Scholar 

  17. Chen, T.H. and Jaffe, L.F. Effects of membrane potential on calcium fluxes of pelvetia eggs. Planta 140 (1978) 63–67.

    Article  CAS  Google Scholar 

  18. Robinson, K.R. The responses of cells to electrical fields: a review. J. Cell Biol. 101 (1985) 2023–2027.

    PubMed  Article  CAS  Google Scholar 

  19. Isaacson, B.M. and Bloebaum, R.D. Bone bioelectricity: what have we learned in the past 160 years? J. Biomed. Mat. Res. A 95A (2010) 1270–1279.

    Article  CAS  Google Scholar 

  20. Gao, R.Ch., Zhang, X.D., Sun, Y.H., Kamimura, Y., Mogilner, A., Devreotes, P.N. and Zhao, M. Different roles of membrane potentials in electrotaxis and chemotaxis of Dictyostelium cells. Eukaryot. Cell 10 (2011) 1251–1256.

    PubMed  Article  CAS  Google Scholar 

  21. Borys, P. On the biophysics of cathodal galvanotaxis in rat prostate cancer cells: Poisson-Nernst-Planck equation approach. Eur. Biophys. J. 41 (2012) 527–534.

    PubMed  Article  Google Scholar 

  22. Coalson, R.D. and Kurnikova, M.G. Poisson-Nernst-Planck theory of ion permeation through biological channels. in: Biological membrane ion channels (Chung, S.H., Andersen, O.S. and Krishnamurthy, V. Eds.). Springer, New York, 2007, 449–485.

    Chapter  Google Scholar 

  23. Kurnikova, M.G., Coalson, R.D., Graf, P. and Nitzan, A. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the Gramicidin A channel. Biophys. J. 76 (1999) 642–656.

    PubMed  Article  CAS  Google Scholar 

  24. Rubinstein, I. Electro-diffusion of ions. SIAM studies in applied mathematics. Philadelphia, 1990.

    Google Scholar 

  25. Ni, M.J., Tao, W.Q. and Wang, S.J. Stability controllable second-order difference scheme for convection term. J. Therm. Sci. 7 (1998) 119–130.

    Article  CAS  Google Scholar 

  26. Abelson, P.H. and Duryee, W.R. Radioactive sodium permeability and exchange in frog eggs. Biol. Bull. 96 (1949) 205–217.

    PubMed  Article  CAS  Google Scholar 

  27. Hodgkin, A.L. and Keynes, R.D. The mobility and diffusion coefficient of potassium in giant axons from Sepia. J. Physiol. 119 (1953) 513–528.

    PubMed  CAS  Google Scholar 

  28. Donahue, B.S. and Abercrombie, R.F. Free diffusion coefficient of ionic calcium in cytoplasm. Cell Calcium 8 (1987) 437–448.

    PubMed  Article  CAS  Google Scholar 

  29. Lodish, H.F., Berk, A., Matsudaira, P., Kaiser C.A., Krieger, M., Scott, M.P., Zipursky, L. and Darnell, J. Molecular Cell Biology. Freeman, W.H. New York, 2003.

    Google Scholar 

  30. Neher, E. and Sakmann, B. Single channel recording. Plenum, New York, 1995.

    Google Scholar 

  31. Kager, H., Wasman, W.J. and Somjen, G.G. Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J. Neurophysiol. 84 (2000) 495–512.

    PubMed  CAS  Google Scholar 

  32. Zeng, J., Borchman, D. and Paterson, C.A. Calcium permeability in large unilamellar vesicles prepared from bovine lens cortical lipids. Exp. Eye Res. 64 (1997) 115–120.

    PubMed  Article  CAS  Google Scholar 

  33. Obejero-Paz, C.A., Jones, S.W. and Scarpa, A. Multiple channels mediate calcium leakage in the A7r5 smooth muscle-derived cell line. Biophys. J. 32 (1998) 12–21.

    Google Scholar 

  34. Di Leva, F., Domi, T., Fedrizzi, L., Lim, D. and Carafoli, E. The plasmamembrane Ca2+ ATPase of animal cells: Structure, function and regulation. Arch. Biochem. Biophys. 476 (2008) 65–74.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Borys.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borys, P. The role of passive calcium influx through the cell membrane in galvanotaxis. Cell Mol Biol Lett 18, 187–199 (2013). https://doi.org/10.2478/s11658-013-0082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-013-0082-3

Key words

  • Galvanotaxis
  • Electrotaxis
  • Passive influx
  • Leak current
  • PNP equation
  • Electrodiffusion
  • Motility