Skip to main content

Human mesenchymal stem cells express neuronal markers after osteogenic and adipogenic differentiation


Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells). Recent in vitro studies revealed that, in the absence of any kind of differentiation stimuli, undifferentiated MSCs express neural differentiation markers, but the literature data do not all concur. Considering their promising therapeutic potential for neurodegenerative diseases, it is very important to expand our knowledge about this particular biological property of MSCs. In this study, we confirmed the spontaneous expression of neural markers (neuronal, glial and progenitor markers) by undifferentiated human MSCs (hMSCs) and in particular, we demonstrated that the neuronal markers βIII-tubulin and NeuN are expressed by a very high percentage of hMSCs, regardless of the number of culture passages and the culture conditions. Moreover, the neuronal markers βIII-tubulin and NeuN are still expressed by hMSCs after in vitro osteogenic and adipogenic differentiation. On the other hand, chondrogenically differentiated hMSCs are negative for these markers. Our findings suggest that the expression of neuronal markers could be common to a wide range of cellular types and not exclusive for neuronal lineages. Therefore, the expression of neuronal markers alone is not sufficient to demonstrate the differentiation of MSCs towards the neuronal phenotype. Functional properties analysis is also required.



adipogenic induction medium


adipogenic maintenance medium


bovine serum albumin


cyclic adenosine monophosphate


Dulbecco’s modified Eagle’s medium


fluorescence-activated cell sorting


fetal bovine serum


dorsal root ganglia


forward light scatter


human mesenchymal stem cells




neural crest




nerve growth factor


neural progenitor basal medium


neuron restrictive silencer factor










side scatter


  1. Tondreau, T., Lagneaux, L., Dejeneffe, M., Massy, M., Mortier, C., Delforge, A. and Bron, D. Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 72 (2004) 319–326.

    PubMed  Article  CAS  Google Scholar 

  2. Minguell, J.J., Fierro, F.A., Epuñan, M.J., Erices, A.A., Sierralta and W.D. Nonstimulated human uncommitted mesenchymal stem cells express cell markers of mesenchymal and neural lineages. Stem Cells Dev. 14 (2005) 408–414.

    PubMed  Article  CAS  Google Scholar 

  3. Bertani, N., Malatesta, P., Volpi, G., Sonego, P. and Perris, R. Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J. Cell. Sci. 118 (2005) 3925–3936.

    PubMed  Article  CAS  Google Scholar 

  4. Blondheim, N.R., Levy, Y.S., Ben-Zur, T., Burshtein, A., Cherlow, T., Kan, I., Barzilai, R., Bahat-Stromza, M., Barhum, Y., Bulvik, S., Melamed, E. and Offen, D. Human mesenchymal stem cells express neural genes, suggesting a neural predisposition. Stem Cells Dev. 15 (2006) 141–164.

    PubMed  Article  CAS  Google Scholar 

  5. Lamoury, F.M., Croitoru-Lamoury, J. and Brew, B.J. Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1. Cytotherapy 8 (2006) 228–242.

    PubMed  Article  CAS  Google Scholar 

  6. Kamishina, H., Deng, J., Oji, T., Cheeseman, J.A. and Clemmons, R.M. Expression of neural markers on bone marrow-derived canine mesenchymal stem cells. Am. J. Vet. Res. 67 (2006) 1921–1928.

    PubMed  Article  CAS  Google Scholar 

  7. Scuteri, A., Miloso, M., Foudah, D., Orciani, M., Cavaletti, G. and Tredici, G. Mesenchymal stem cells neuronal differentiation ability: a real perspective for nervous system repair? Curr. Stem Cell Res. Ther. 6 (2011) 82–92.

    PubMed  Article  CAS  Google Scholar 

  8. Scuteri, A., Ravasi, M., Pasini, S., Bossi, M. and Tredici, G. Mesenchymal stem cells support dorsal root ganglion neurons survival by inhibiting the metalloproteinase pathway. Neuroscience 172 (2011) 12–19.

    PubMed  Article  CAS  Google Scholar 

  9. Salvadè, A., Belotti, D., Donzelli, E., D’Amico, G., Gaipa, G., Renoldi, G., Carini, F., Baldoni, M., Pogliani, E.M., Tredici, G., Biondi, A. and Biagi, E. GMP-grade preparation of biomimetic scaffolds with osteo-differentiated autologous mesenchymal stromal cells for the treatment of alveolar bone resorption in periodontal disease. Cytotherapy 9 (2007) 427–438.

    PubMed  Article  Google Scholar 

  10. Tondreau, T., Dejeneffe, M., Meuleman, N., Stamatopoulos, B., Delforge, A., Martiat, P., Bron, D. and Lagneaux, L. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells. BMC Genomics 9 (2008) 166.

    PubMed  Article  Google Scholar 

  11. Nicolini, G., Rigolio, R., Scuteri, A., Miloso, M., Saccomanno, D., Cavaletti, G. and Tredici, G. Effect of trans-resveratrol on signal transduction pathways involved in paclitaxel-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurochem. Int. 42 (2003) 419–429.

    PubMed  Article  CAS  Google Scholar 

  12. Ronca, F., Chan, S.L. and Yu, V.C. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine induces apoptosis in human neuroblastoma cells, SH-SY5Y, through a p53-dependent pathway. J. Biol. Chem. 272 (1997) 4252–4260.

    PubMed  Article  CAS  Google Scholar 

  13. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.J. and Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8 (2006) 315–317.

    PubMed  Article  CAS  Google Scholar 

  14. Redaelli, S., Bentivegna, A., Foudah, D., Miloso, M., Redondo, J., Riva, G., Baronchelli, L., Dalprà, L. and Tredici, G. From cytogenomic to epigenomic profiles: monitoring the biological behavior of in vitro cultured human bone marrow mesenchymal stem cells. Stem Cell Res. Ther. (2012) doi:10.1186/scrt138.

    Google Scholar 

  15. Wiese, C., Rolletschek, A., Kania, G., Blyszczuk, P., Tarasov, K.V., Tarasova, Y., Wersto, R.P., Boheler, K.R. and Wobus, A.M. Nestin expression-a property of multi-lineage progenitor cells? Cell. Mol. Life Sci. 61 (2004) 2510–2522.

    PubMed  Article  CAS  Google Scholar 

  16. Katsetos, C.D., Legido, A., Perentes, E. and Mörk, S.J. Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. J. Child. Neurol. 18 (2003) 851–866.

    PubMed  Article  Google Scholar 

  17. Mullen, R.J., Buck, C.R. and Smith, A.M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116 (1992) 201–211.

    PubMed  CAS  Google Scholar 

  18. Lee, M.K. and Cleveland, D.W. Neuronal intermediate filaments. Annu. Rev. Neurosci. 19 (1996) 187–217.

    PubMed  Article  CAS  Google Scholar 

  19. Eng, L.F., Ghirnikar, R.S. and Lee, Y.L. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem. Res. 25 (2000) 1439–1451.

    PubMed  Article  CAS  Google Scholar 

  20. Donato, R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell. Biol. 33 (2001) 637–668.

    PubMed  Article  CAS  Google Scholar 

  21. Sodek, J., Ganss, B. and McKee, M.D. Osteopontin. Crit. Rev. Oral Biol. Med. 11 (2000) 279–303.

    PubMed  Article  CAS  Google Scholar 

  22. Hauschka, P.V. Osteocalcin: the vitamin K-dependent Ca2+-binding protein of bone matrix. Haemostasis 16 (1986) 258–272.

    PubMed  CAS  Google Scholar 

  23. Rosen, E.D. and Spiegelman, B.M. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J. Biol. Chem. 276 (2001) 37731–37734.

    PubMed  Article  CAS  Google Scholar 

  24. Dredge, B.K. and Jensen, K.B. NeuN/Rbfox3 nuclear and cytoplasmic isoforms differentially regulate alternative splicing and nonsense-mediated decay of Rbfox2. PLoS One 6 (2011) e21585.

    PubMed  Article  Google Scholar 

  25. Takashima, Y., Era, T., Nakao, K., Kondo, S., Kasuga, M., Smith, A.G. and Nishikawa, S. Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129 (2007) 1377–1388.

    PubMed  Article  CAS  Google Scholar 

  26. Nagoshi, N., Shibata, S., Kubota, Y., Nakamura, M., Nagai, Y., Satoh, E., Morikawa, S., Okada, Y., Mabuchi, Y., Katoh, H., Okada, S., Fukuda, K., Suda, T., Matsuzaki, Y., Toyama, Y. and Okano, H. Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Stem Cell 2 (2008) 392–403.

    CAS  Google Scholar 

  27. Morikawa, S., Mabuchi, Y., Niibe, K., Suzuki, S., Nagoshi, N., Sunabori, T., Shimmura, S., Nagai, Y., Nakagawa, T., Okano, H. and Matsuzaki, Y. Development of mesenchymal stem cells partially originate from the neural crest. Biochem. Biophys. Res. Commun. 379 (2009) 1114–1119.

    PubMed  Article  CAS  Google Scholar 

  28. Croft, A.P. and Przyborski, S.A. Formation of neurons by non-neural adult stem cells: potential mechanism implicates an artifact of growth in culture. Stem Cells 24 (2006) 1841–1851.

    PubMed  Article  CAS  Google Scholar 

  29. Barnabé, G.F., Schwindt, T.T., Calcagnotto, M.E., Motta, F.L., Martinez, G. Jr, de Oliveira, A.C. Keim, L.M., D’Almeida, V., Mendez-Otero, R. and Mello, L.E. Chemically-induced RAT mesenchymal stem cells adopt molecular properties of neuronal-like cells but do not have basic neuronal functional properties. PLoS One 4 (2009) e5222.

    PubMed  Article  Google Scholar 

  30. Schoenherr, C.J. and Anderson, D.J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267 (1995) 1360–1363.

    PubMed  Article  CAS  Google Scholar 

  31. Gingras, M., Champigny, M.F. and Berthod, F. Differentiation of human adult skin-derived neuronal precursors into mature neurons. J. Cell. Physiol. 210 (2007) 498–506.

    PubMed  Article  CAS  Google Scholar 

  32. Tischfield, M.A. and Engle, E.C. Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the ‘multi-tubulin’ hypothesis. Biosci. Rep. 30 (2010) 319–330.

    PubMed  Article  CAS  Google Scholar 

  33. Kim, K.K., Adelstein, R.S. and Kawamoto, S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J. Biol. Chem. 284 (2009) 31052–31061.

    PubMed  Article  CAS  Google Scholar 

  34. Dent, M.A., Segura-Anaya, E., Alva-Medina, J. and Aranda-Anzaldo, A. NeuN/Fox-3 is an intrinsic component of the neuronal nuclear matrix. FEBS Lett. 584 (2010) 2767–2771.

    PubMed  Article  CAS  Google Scholar 

  35. Beresford, J.N., Bennett, J.H., Devlin, C., Leboy, P. and Owen, M.E. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell. Sci. 102 (1992) 341–351.

    PubMed  CAS  Google Scholar 

  36. Park, S.R., Oreffo, R.O. and Triffitt, J.T. Interconversion potential of cloned human marrow adipocytes in vitro. Bone 24 (1999) 549–554.

    PubMed  Article  CAS  Google Scholar 

  37. Jaiswal, R.K., Jaiswal, N., Bruder, S.P., Mbalaviele, G., Marshak, D.R. and Pittenger, M.F. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275 (2000) 9645–9652.

    PubMed  Article  CAS  Google Scholar 

  38. Muruganandan, S., Roman, A.A. and Sinal, C.J. Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: cross talk with the osteoblastogenic program. Cell Mol. Life Sci. 66 (2009) 236–253.

    PubMed  Article  CAS  Google Scholar 

  39. Fu, L., Tang, T., Miao, Y., Zhang, S., Qu, Z. and Dai, K. Stimulation of osteogenic differentiation and inhibition of adipogenic differentiation in bone marrow stromal cells by alendronate via ERK and JNK activation. Bone 43 (2008) 40–47.

    PubMed  Article  CAS  Google Scholar 

  40. Santiago-Mora, R., Casado-Díaz, A., De Castro, M.D. and Quesada-Gómez, J.M. Oleuropein enhances osteoblastogenesis and inhibits adipogenesis: the effect on differentiation in stem cells derived from bone marrow. Osteoporos. Int. 22 (2011) 675–684.

    PubMed  Article  CAS  Google Scholar 

  41. Wang, L., Shao, Y.Y. and Ballock, R.T. Peroxisome proliferation-activated receptor-? promotes adipogenic changes in growth plate chondrocytes in vitro. PPAR Res. 2006 (2006) 67297.

    PubMed  Article  Google Scholar 

  42. Lee, S., Choi, K., Ahn, H., Song, K., Choe, J. and Lee, I. TuJ1 (class III beta-tubulin) expression suggests dynamic redistribution of follicular dendritic cells in lymphoid tissue. Eur. J. Cell Biol. 84 (2005) 453–459.

    PubMed  Article  CAS  Google Scholar 

  43. Katsetos, C.D., Herman, M.M. and Mörk, S.J. Class III beta-tubulin in human development and cancer. Cell. Motil. Cytoskeleton 55 (2003) 77–96.

    PubMed  Article  CAS  Google Scholar 

  44. Ferrandina, G., Zannoni, G.F., Martinelli, E., Paglia, A., Gallotta, V., Mozzetti, S., Scambia, G. and Ferlini, C. Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin. Cancer Res. 12 (2006) 2774–2779.

    PubMed  Article  CAS  Google Scholar 

  45. Jouhilahti, E.M., Peltonen, S. and Peltonen, J. Class III beta-tubulin is a component of the mitotic spindle in multiple cell types. J. Histochem. Cytochem. 56 (2008) 1113–1119.

    PubMed  Article  CAS  Google Scholar 

  46. Gilyarov AV. Nestin in central nervous system cells. Neurosci. Behav. Physiol. 38 (2008) 165–169.

    PubMed  Article  CAS  Google Scholar 

  47. Kishaba, Y., Matsubara, D. and Niki, T. Heterogeneous expression of nestin in myofibroblasts of various human tissues. Pathol. Int. 60 (2010) 378–385.

    PubMed  Article  Google Scholar 

  48. Krupkova, O. Jr, Loja, T., Zambo, I. and Veselska, R. Nestin expression in human tumors and tumor cell lines. Neoplasma 57 (2010) 291–298.

    PubMed  Article  Google Scholar 

  49. Piras, F., Perra, M.T., Murtas, D., Minerba, L., Floris, C., Maxia, C., Demurtas, P., Ugalde, J., Ribatti, D. and Sirigu, P. The stem cell marker nestin predicts poor prognosis in human melanoma. Oncol. Rep. 23 (2010) 17–24.

    PubMed  Google Scholar 

  50. Viale, G., Gambacorta, M., Coggi, G., Dell’Orto, P., Milani, M. and Doglioni, C. Glial fibrillary acidic protein immunoreactivity in normal and diseased human breast. Virchows Arch. A Pathol. Anat. Histopathol. 418 (1991) 339–348.

    PubMed  Article  CAS  Google Scholar 

  51. Salama, I., Malone, P.S., Mihaimeed, F. and Jones, J.L. A review of the S100 proteins in cancer. Eur. J. Surg. Oncol. 34 (2008) 357–364.

    PubMed  Article  CAS  Google Scholar 

  52. Ichikawa, H., Itota, T., Torii, Y., Inoue, K. and Sugimoto, T. Osteocalcinimmunoreactive primary sensory neurons in the rat spinal and trigeminal nervous systems. Brain Res. 838 (1999) 205–209.

    PubMed  Article  CAS  Google Scholar 

  53. Sarruf, D.A., Yu, F., Nguyen, H.T., Williams, D.L., Printz, R.L., Niswender, K.D. and Schwartz, M.W. Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis. Endocrinology 150 (2009) 707–712.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mariarosaria Miloso.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Foudah, D., Redondo, J., Caldara, C. et al. Human mesenchymal stem cells express neuronal markers after osteogenic and adipogenic differentiation. Cell Mol Biol Lett 18, 163–186 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • Mesenchymal stem cells
  • Neural markers
  • βIII-tubulin
  • NeuN
  • Osteogenic differentiation
  • Adipogenic differentiation
  • Chondrogenic differentiation
  • Neuronal differentiation