Skip to main content

Development of a new wheat microarray from a durum wheat totipotent cDNA library used for a powdery mildew resistance study

Abstract

Totipotent cDNA libraries representative of all the potentially expressed sequences in a genome would be of great benefit to gene expression studies. Here, we report on an innovative method for creating such a library for durum wheat (Triticum turgidum L. var. durum) and its application for gene discovery. The use of suitable quantities of 5-azacytidine during the germination phase induced the demethylation of total DNA, and the resulting seedlings potentially express all of the genes present in the genome. A new wheat microarray consisting of 4925 unigenes was developed from the totipotent cDNA library and used to screen for genes that may contribute to differences in the disease resistance of two near-isogenic lines, the durum wheat cultivar Latino and the line 5BIL-42, which are respectively susceptible and resistant to powdery mildew. Fluorescently labeled cDNA was prepared from the RNA of seedlings of the two near-isogenic wheat lines after infection with a single powdery mildew isolate under controlled conditions in the greenhouse. Hybridization to the microarray identified six genes that were differently expressed in the two lines. Four of the sequences could be assigned putative functions based on their similarity to known genes in public databases. Physical mapping of the six genes localized them to two regions of the genome: the centromeric region of chromosome 5B, where the Pm36 resistance gene was previously localized, and chromosome 6B.

Abbreviations

5-AzaC:

5-azacytidine

BAC:

bacterial artificial chromosome

EST:

expressed sequence tags

GST:

glutathione s-transferase

HSP90:

heat shock protein

NIL:

near-isogenic line

References

  1. Snape, J. and Moore, G. Reflections and opportunities: gene discovery in the complex wheat genome. Dev. Plant Breed. 12 (2007) 677–684.

    Article  Google Scholar 

  2. Cifarelli, R., D’Onofrio, O., Lauria, G., Gallitelli, M. and Cellini, F. A collection of expressed sequence tags (ESTs) from “totipotent” cDNA of durum wheat. Minerva Biotech. 18 (2006) 159–164.

    Google Scholar 

  3. Sorm, F., Pískala, A., Cihák, A. and Veselý, J. 5-Azacytidine, a new, highly effective cancerostatic. Experientia 20 (1964) 202–203.

    PubMed  Article  CAS  Google Scholar 

  4. Halle, S. 5-Azacytidine as a mutagen for arboviruses. J. Virol. 2 (1968) 1228–1229.

    PubMed  CAS  Google Scholar 

  5. Karon, M. and Benedict, W.F. Chromatid breakage: differential effect of inhibitors of DNA synthesis during G2 phase. Science 178 (1972) 56–62.

    Article  Google Scholar 

  6. Viegas-Péquignot, E. and Dutrillaux, B. Segmentation of human chromosomes induced by 5-ACR (5-azacytidine). Hum. Genet. 34 (1976) 247–254.

    PubMed  Article  Google Scholar 

  7. Landolph, J.R. and Jones, P.A. Mutagenicity of 5-azacytidine and related nucleosides in C3H/10T 1/2 clone 8 and V79 cells. Cancer Res. 42 (1982) 817–823.

    PubMed  CAS  Google Scholar 

  8. Paul, P. Mutagenesis and transformation of C3H/10T1/2 mouse embryo fibroblasts with ultraviolet light and 5-azacytidine. Kobe J. Med. Sci. 28 (1982) 181–196.

    PubMed  CAS  Google Scholar 

  9. Vesely, J. and Cihak, A. 5-Azacytidine: mechanism of action and biological effects in mammalian cells. Pharmacol. Ther. 2 (1978) 813–840.

    CAS  Google Scholar 

  10. Lu, L.J. and Randerath, K. Mechanism of 5-azacytidine-induced transfer RNA cytosine-5-methyltransferase deficiency. Cancer Res. 40 (1980) 2701–2705.

    PubMed  CAS  Google Scholar 

  11. Lee, T.T. and Karon, M.R. Inhibition of protein synthesis in 5-azacytidinetreated HeLa cells. Biochem. Pharmacol. 25 (1976) 1737–1742.

    PubMed  Article  CAS  Google Scholar 

  12. http://v3.espacenet.com/publicationDetails/biblioCC=WO&NR=2005003344&KC=&FT=).

  13. Gadaleta, A., Mastrangelo, M., Russo, M.A., Giove, S.L., D’Onofrio, O., Mango, T., Cellini, F., Blanco, A., Cattivelli, L. and Cifarelli, R.A. Development and characterization of EST-derived SSRs from a “totipotent” cDNA library of durum wheat. Plant Breed. 129 (2010) 715–717.

    Article  CAS  Google Scholar 

  14. Blanco, A., Gadaleta, A., Cenci, A., Carluccio, A.V., Abdelbacki, A.M.M. and Simeone, R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor. Appl. Genet. 117 (2008) 135–142.

    PubMed  Article  CAS  Google Scholar 

  15. McIntosh, R.A., Dubcovsky, J., Rogers, W.J., Morris, C., Appels, R. and Xia, X.C. Catalogue of gene symbols for wheat: 2009 supplement. In: Proceedings of the 11th International Wheat Genetics Symposium, Brisbane Qld, Australia, 2010.

    Google Scholar 

  16. Paolacci, A.R., Tanzarella, O.A., Porceddu, E. and Ciaffi, M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 10:11 (2009) doi:10.1186/1471-2199-10-11.

    PubMed  Article  Google Scholar 

  17. Sears, E.R. The aneuploids of common wheat. Mob Hill Agricultural Exp. Stat. Res. Bulletin 572 (1954) 1–58.

    Google Scholar 

  18. Sears, E.R. Nullisomic-tetrasomic combinations in hexaploid wheat. In: Chrom. Manip. and Plant Gen. (Riley, R. Lewis, K.R., Eds), Oliver and Boyd, Edinburgh, 1966, 29–45.

    Google Scholar 

  19. Sears, E.R. and Sears, L.M.S. The telocentric chromosomes of common wheat. In: Proceedings of the 5th international wheat genetics symposium. Indian Society of Genetics and Plant Breeding New Delhi, (Ramanujam S Eds.), 1978, 389–407.

    Google Scholar 

  20. Joppa, L.R. and Williams, N.D. The Langdon durum disomic-substitutions and aneuploid analysis in tetraploid wheat. Genome 30 (1988) 222–228.

    Article  Google Scholar 

  21. Endo, T.R. and Gill, B.S. The deletion stocks of common wheat. J. Hered. 87 (1996) 295–307.

    Article  CAS  Google Scholar 

  22. Qi, L.L., Echalier, B., Friebe, B. and Gill, B. Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct. Integr. Genomics 3 (2003) 39–55.

    PubMed  CAS  Google Scholar 

  23. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270 (1995) 467–470.

    PubMed  Article  CAS  Google Scholar 

  24. Gregersen, P.K., Kowalsky, E., de Andrade, M. and Jawaheer, D. Affected sib pair analysis of families with absolute pitch (AP): Exclusion of the Williams locus. Am. J. Hum. Genet. 61 (1997) 2337–2349.

    Google Scholar 

  25. Ellingboe, A.H. Genetics and physiology of primary infection by Erysiphe graminis f.sp. hordei. Phytopathology 62 (1972) 401–406.

    Article  Google Scholar 

  26. Kunoh, H. Primary germ tubes of Erysiphe graminis conidia. In: Plant Infection: The Physiological and Biochemical Basis (Asada, Y., Bushnell, W.R., Ouchi, S., Vance, C.P., Eds), Japan Scientific Society Press, Tokyo, 1982, 45–59.

    Google Scholar 

  27. Jorgensen, J.H. Genetic analysis of barley mutants with modifications of powdery mildew resistance gene Ml-a12. Genome 30 (1988) 129–132.

    Article  Google Scholar 

  28. Clark, T.A., Zeyen, R.J., Smith, A.G., Bushnell, W.R., Szabo, L.J. and Vance, C.P. Host response gene transcript accumulation in relation to visible cytological events during Erysiphe graminis attack in isogenic barley lines differing at the Ml-a locus. Physiol. Mol. Plant Pathol. 43 (1993) 283–298.

    Article  CAS  Google Scholar 

  29. Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C. and Manners, J.M. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 11655–11660.

    PubMed  Article  CAS  Google Scholar 

  30. Mysore, K.S., Crasta, O.R., Tuori, R.P., Folkerts, O., Swirsky, P.B. and Martin, G.B. Comprehensive transcript profiling of Ptoand Prf-mediated host defence responses to infection by Pseudomonas syringae pv. tomato. Plant J. 32 (2002) 299–315.

    PubMed  Article  CAS  Google Scholar 

  31. Wan, J., Dunning, F.M. and Bent, A.F. Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays. Funct. Integr. Genomics 2 (2002) 259–273.

    PubMed  Article  CAS  Google Scholar 

  32. Puthoff, D.P., Nettleton, D., Rodermel, S.R. and Baum, T.J. Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J. 33 (2003) 911–921.

    PubMed  Article  CAS  Google Scholar 

  33. Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.S., Han, B., Zhu, T., Zou, G. and Katagiri, F. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15 (2003) 317–330.

    PubMed  Article  CAS  Google Scholar 

  34. Van Wees, S.C., Chang H.S., Zhu, T. and Glazebrook, J. Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol. 132 (2003) 606–617.

    PubMed  Article  Google Scholar 

  35. Whitham, S.A., Quan, S., Chang, H.S., Cooper, B., Estes, B., Zhu, T., Wang, X. and Hou, Y.M. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 33 (2003) 271–283.

    PubMed  Article  CAS  Google Scholar 

  36. Eulgem, T., Weigman, V.J., Chang, H.S., McDowell, J.M., Holub, E.B., Glazebrook, J., Zhu, T. and Dangl, J. Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance. Plant Physiol. 135 (2004) 1129–1144.

    PubMed  Article  CAS  Google Scholar 

  37. Hayes, J.D. and Pulford, D.J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Bioch. Mol. Biol. 30 (1995) 445–600.

    Article  CAS  Google Scholar 

  38. Nebert, D.W. and Vasiliou, V. Analysis of the glutathione S-transferase (GST) gene family. Hum. Genomics 1 (2004) 460–464.

    PubMed  Article  CAS  Google Scholar 

  39. van Montfort, B.A., Schuurman-Wolters, G.K., Wind, J., Broos, J., Robillard, G.T. and Pollman, B. Mapping of the dimer interface of the Escherichia coli mannitol permease by cysteine cross-linking. J. Biol. Chem. 277 (2002) 14717–14723.

    PubMed  Article  Google Scholar 

  40. Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J., Wu, A.J., Rathjen, J.P., Bendahmane, A., Day, L. and Baulcombe, D.C. High throughput virusinduced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22 (2003) 5690–5699.

    PubMed  Article  CAS  Google Scholar 

  41. Wang, J.R., Yan, Z.H., Wei, Y.M. and Zheng, Y.L. A novel high-molecularweight glutenin subunit gene Ee1.5 from Elytrigia elongate (Host) Nevski. J. Cereal Sci. 40 (2004) 289–294.

    Article  CAS  Google Scholar 

  42. Hubert, D.A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K. and Dang, J.L. Plant biology cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 22 (2003) 5679–5689.

    PubMed  Article  CAS  Google Scholar 

  43. Wang, G.F., Wei, X., Fan, R., Zhou, H., Wang, X., Yu, C., Dong, L., Dong, Z., Wang, X., Kang, Z., Ling, H., Shen, Q.H., Wang, D. and Zhang, X. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytol. 191 (2011) 418–431.

    PubMed  Article  CAS  Google Scholar 

  44. Golkari, S., Gilbert, J., Prashar, S. and Procunier, J.D. Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organspecific and differentially expressed genes. Plant Biotechnol. J. 5 (2007) 38–49.

    PubMed  Article  CAS  Google Scholar 

  45. Alves, M.S., Reis, P.A.B., Dadalto, S.P., Faria, J.A.Q.A., Fontes, E.P. and Fietto, L.G. A novel transcription factor, ERD15 (Early Responsive to Dehydration 15), connects endoplasmic reticulum stress with an osmotic stress-induced cell death signal. J. Biol. Chem. 286 (2011) 20020–20030.

    PubMed  Article  CAS  Google Scholar 

  46. Malhotra, J.D. and Kaufman, R.J. The endoplasmic reticulum and the unfolded protein response. Semin. Cell. Dev. Biol. 18 (2007) 716–731.

    PubMed  Article  CAS  Google Scholar 

  47. Urade, R. The endoplasmic reticulum stress signaling pathways in plants. Biofactors 35 (2009) 326–331.

    PubMed  Article  CAS  Google Scholar 

  48. Giorio, G., Stigliani, A.L. and D’Ambrosio, C. Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions. Transgenic Res. 16 (2007) 15–28.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Gadaleta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cifarelli, R.A., D’Onofrio, O., Grillo, R. et al. Development of a new wheat microarray from a durum wheat totipotent cDNA library used for a powdery mildew resistance study. Cell Mol Biol Lett 18, 231–248 (2013). https://doi.org/10.2478/s11658-013-0086-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11658-013-0086-z

Key words

  • 5-Azacytidine
  • DNA methylation
  • Powdery mildew
  • Microarray
  • Durum wheat
  • Near-isogenic line
  • Candidate gene
  • Quantitative real-time PCR
  • Physical mapping
  • Pm36 gene
  • Expressed sequence tag