Skip to main content

U937 variant cells as a model of apoptosis without cell disintegration


The variant cell line U937V was originally identified by a higher sensitivity to the cytocidal action of tumor necrosis factor alpha (TNFα) than that of its reference cell line, U937. We noticed that a typical morphological feature of dying U937V cells was the lack of cellular disintegration, which contrasts to the formation of apoptotic bodies seen with dying U937 cells. We found that both TNFα, which induces the extrinsic apoptotic pathway, and etoposide (VP-16), which induces the intrinsic apoptotic pathway, stimulated U937V cell death without cell disintegration. In spite of the distinct morphological differences between the U937 and U937V cells, the basic molecular events of apoptosis, such as internucleosomal DNA degradation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, caspase activation and cytochrome c release, were evident in both cell types when stimulated with both types of apoptosis inducer. In the U937V cells, we noted an accelerated release of cytochrome c, an accelerated decrease in mitochondrial membrane potential, and a more pronounced generation of reactive oxygen species compared to the reference cells. We propose that the U937 and U937V cell lines could serve as excellent comparison models for studies on the mechanisms regulating the processes of cellular disintegration during apoptosis, such as blebbing (zeiosis) and apoptotic body formation.



American Type Culture Collection






2′,7′-dihydrodichlorofluorescein diacetate




mitochondrial membrane potential

·O 2 :

superoxide anion




tramethylrhodamine methyl ester


tumor necrosis factor

U937V :

a variant of the U937 cell line




  1. Viorritto, I.C.B., Nikolov, N.P. and Siegel, R.M. Autoimmunity versus tolerance: can dying cells tip the balance? Clin. Immunol. 122 (2007) 125–134.

    PubMed  Article  CAS  Google Scholar 

  2. Gurumurthy, S., Vasudevan, K.M. and Rangnekar, V.M. Regulation of apoptosis in prostate cancer. Cancer Metastasis Rev. 20 (2001) 225–243.

    PubMed  Article  CAS  Google Scholar 

  3. Böhm, I. and Schild, H. Apoptosis: the complex scenario for a silent cell death. Mol. Imaging Biol. 5 (2003) 2–14.

    PubMed  Article  Google Scholar 

  4. Bras, M., Queenan, B. and Susin, S.A. Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc) 70 (2005) 231–239.

    Article  CAS  Google Scholar 

  5. Krysko, D.V., VandenBerghe, T., D’Herde, K. and Vandenabeele, P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44 (2008) 205–221.

    PubMed  Article  CAS  Google Scholar 

  6. Oliveira, J.B. and Gupta, S. Disorders of apoptosis: mechanisms for autoimmunity in primary immunodeficiency diseases. J. Clin. Immunol. 28Suppl. 1, (2008) S20–S28.

    PubMed  Article  CAS  Google Scholar 

  7. Jana, N.R. NSAIDs and apoptosis. Cell Mol. Life Sci. 65 (2008) 1295–1301.

    PubMed  Article  CAS  Google Scholar 

  8. Festjens, N., VandenBerghe, T. and Vandenabeele, P. Necrosis, a wellorchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta 1757 (2006) 1371–1387.

    PubMed  Article  CAS  Google Scholar 

  9. Groninger, E., Meeuwsen-De Boer, G.J., De Graaf, S.S.N., Kamps, W.A. and De Bont, E.S.J.M. Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: a mitochondrial controlled pathway regulated by reactive oxygen species? Int. J. Oncol. 21 (2002) 1339–1345.

    PubMed  CAS  Google Scholar 

  10. Liao, P. and Lieu, C. Cell cycle specific induction of apoptosis and necrosis by paclitaxel in the leukemic U937 cells. Life Sci. 76 (2005) 1623–1639.

    PubMed  Article  CAS  Google Scholar 

  11. Cerella, C., Scherer, C., Cristofanon, S., Henry, E., Anwar, A., Busch, C., Montenarh, M., Dicato, M., Jacob, C. and Diederich, M. Cell cycle arrest in early mitosis and induction of caspase-dependent apoptosis in U937 cells by diallyltetrasulfide (Al2S4). Apoptosis 14 (2009) 641–654.

    PubMed  Article  CAS  Google Scholar 

  12. Van Hoof, C. and Goris, J. Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. Biochim. Biophys. Acta 1640 (2003) 97–104.

    PubMed  Article  Google Scholar 

  13. Hail, N.J. Mitochondria: A novel target for the chemoprevention of cancer. Apoptosis 10 (2005) 687–705.

    PubMed  Article  CAS  Google Scholar 

  14. Hori, T., Kondo, T., Tabuchi, Y., Takasaki, I., Zhao, Q., Kanamori, M., Yasuda, T. and Kimura, T. Molecular mechanism of apoptosis and gene expressions in human lymphoma U937 cells treated with anisomycin. Chem. Biol. Interact. 172 (2008) 125–140.

    PubMed  Article  CAS  Google Scholar 

  15. Ho, S., Chen, W., Chiu, H., Lai, C., Guo, H. and Wang, Y. Combination treatment with arsenic trioxide and irradiation enhances apoptotic effects in U937 cells through increased mitotic arrest and ROS generation. Chem. Biol. Interact. 179 (2009) 304–313.

    PubMed  Article  CAS  Google Scholar 

  16. Kaszubowska, L., Engelmann, H., Gotartowska, M., Iliszko, M. and Bigda, J. Identification of two U937 cell sublines exhibiting different patterns of response to tumour necrosis factor. Cytokine 13 (2001) 365–370.

    PubMed  Article  CAS  Google Scholar 

  17. Shin, D.Y., Kim, G.Y., Li, W., Choi, B.T., Kim, N.D., Kang, H.S. and Choi, Y.H. Implication of intracellular ROS formation, caspase-3 activation and Egr-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells. Biomed. Pharmacother. 63 (2009) 86–94.

    PubMed  Article  CAS  Google Scholar 

  18. Python, F., Goebel, C. and Aeby, P. Assessment of the U937 cell line for the detection of contact allergens. Toxicol. Appl. Pharmacol. 220 (2007) 113–124.

    PubMed  Article  CAS  Google Scholar 

  19. Denecker, G., Vercammen, D., Declercq, W. and Vandenabeele, P. Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol. Life Sci. 58 (2001) 356–370.

    PubMed  Article  CAS  Google Scholar 

  20. Takahashi, A., Masuda, A., Sun, M., Centonze, V.E. and Herman, B. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res. Bull. 62 (2004) 497–504.

    PubMed  Article  CAS  Google Scholar 

  21. Smart, D.J., Halicka, H.D., Schmuck, G., Traganos, F., Darzynkiewicz, Z. and Williams, G.M. Assessment of DNA double-strand breaks and gammaH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone. Mutat. Res. 641 (2008) 43–47.

    PubMed  Article  CAS  Google Scholar 

  22. Sundstrom, C. and Nilsson, K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int. J. Cancer 17 (1976) 565–577.

    PubMed  Article  CAS  Google Scholar 

  23. Ndozangue-Touriguine, O., Hamelin, J. and Bréard, J. Cytoskeleton and apoptosis. Biochem. Pharmacol. 76 (2008) 11–18.

    PubMed  Article  CAS  Google Scholar 

  24. Izyumov, D.S., Avetisyan, A.V., Pletjushkina, O.Y., Sakharov, D.V., Wirtz, K.W., Chernyak, B.V. and Skulachev, V.P. “Wages of fear”: transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim. Biophys. Acta 1658 (2004) 141–147.

    PubMed  Article  CAS  Google Scholar 

  25. Orlando, K.A., Stone, N.L. and Pittman, R.N. Rho kinase regulates fragmentation and phagocytosis of apoptotic cells. Exp. Cell Res. 312 (2006) 5–15.

    PubMed  Article  CAS  Google Scholar 

  26. Salvioli, S., Barbi, C., Dobrucki, J., Moretti, L., Pinti, M., Pedrazzi, J., Pazienza, T.L., Bobyleva, V., Franceschi, C. and Cossarizza, A. Opposite role of changes in mitochondrial membrane potential in different apoptotic processes. FEBS Lett. 469 (2000) 186–190.

    PubMed  Article  CAS  Google Scholar 

  27. Chung, Y.M., Bae, Y.S. and Lee, S.Y. Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radic. Biol. Med. 34 (2003) 434–442.

    PubMed  Article  CAS  Google Scholar 

  28. Watabe, M. and Nakaki, T. ATP depletion does not account for apoptosis induced by inhibition of mitochondrial electron transport chain in human dopaminergic cells. Neuropharmacology 52 (2007) 536–541.

    PubMed  Article  CAS  Google Scholar 

  29. Krysko, D.V., D’Herde, K. and Vandenabeele, P. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11 (2006) 1709–1726.

    PubMed  Article  Google Scholar 

  30. Raina, A.K., Hochman, A., Zhu, X., Rottkamp, C.A., Nunomura, A., Siedlak, S.L., Boux, H., Castellani, R.J., Perry, G. and Smith, M.A. Abortive apoptosis in Alzheimer’s disease. Acta Neuropathol. 101 (2001) 305–310.

    PubMed  CAS  Google Scholar 

  31. Schrijvers, D.M., Martinet, W., De Meyer, G.R.Y., Andries, L., Herman, A.G. and Kockx, M.M. Flow cytometric evaluation of a model for phagocytosis of cells undergoing apoptosis. J. Immunol. Methods 287 (2004) 101–108.

    PubMed  Article  CAS  Google Scholar 

  32. Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet, W., Nemes, Z., Bursch, W. and Fésüs, L. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Differ. 14 (2007) 1117–1128.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jacek Jerzy Bigda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stasiłojć, G., Pinto, S., Wyszkowska, R. et al. U937 variant cells as a model of apoptosis without cell disintegration. Cell Mol Biol Lett 18, 249–262 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • Apoptosis
  • U937 cells
  • Apoptotic bodies
  • Cell disintegration